Friday 16 September 2022
Technische Universiteit Eindhoven

- Available time: 3 hours.
- Each problem is worth 10 points. Points can also be awarded for partial solutions.
- Write down all the steps of your argumentation. A clear reasoning is just as important as the final answer.
- Calculators and formula sheets are not allowed. You can only bring a pen, ruler (set square), compass and your math skills.
- Use a separate sheet for each problem and also hand in your draft sheets (for each problem separately!). Good luck!

1. A positive integer n is called divisor primary if for every positive divisor d of n at least one of the numbers $d-1$ and $d+1$ is prime. For example, 8 is divisor primary, because its positive divisors 1,2 , 4 , and 8 each differ by 1 from a prime number ($2,3,5$, and 7 , respectively), while 9 is not divisor primary, because the divisor 9 does not differ by 1 from a prime number (both 8 and 10 are composite).
(a) Which odd numbers can occur as the divisor of a divisor primary number?
(b) Determine the largest divisor primary number.
2. A set consisting of at least two distinct positive integers is called centenary if its greatest element is 100 . We will consider the average of all numbers in a centenary set, which we will call the average of the set. For example, the average of the centenary set $\{1,2,20,100\}$ is $\frac{123}{4}$ and the average of the centenary set $\{74,90,100\}$ is 88 .
Determine all integers that can occur as the average of a centenary set.
3. Given a positive integer c, we construct a sequence of fractions $a_{1}, a_{2}, a_{3}, \ldots$ as follows:

- $a_{1}=\frac{c}{c+1}$;
- to get a_{n}, we take a_{n-1} (in its most simplified form, with both the numerator and denominator chosen to be positive) and we add 2 to the numerator and 3 to the denominator. Then we simplify the result again as much as possible, with positive numerator and denominator.
For example, if we take $c=20$, then $a_{1}=\frac{20}{51}$ and $a_{2}=\frac{22}{24}=\frac{11}{12}$. Then we find that $a_{3}=\frac{13}{15}$ (which is already simplified) and $a_{4}=\frac{15}{18}=\frac{5}{6}$.
(a) Let $c=10$, hence $a_{1}=\frac{10}{11}$. Determine the largest n for which a simplification is needed in the construction of a_{n}.
(b) Let $c=99$, hence $a_{1}=\frac{99}{100}$. Determine whether a simplification is needed somewhere in the sequence.
(c) Find a value of c for which in the first step of the construction of a_{5} (before simplification) the numerator and denominator are divisible by 5 .

4. In triangle $A B C$, the point D lies on segment $A B$ such that $C D$ is the angle bisector of angle C. The perpendicular bisector of segment $C D$ intersects the line $A B$ in E. Suppose that $|B E|=4$ and $|A B|=5$.
(a) Prove that $\angle B A C=\angle B C E$.
(b) Prove that $\frac{|A E|}{|C E|}=\frac{|C E|}{|B E|}$.
(c) Prove that $2|A D|=|E D|$.
5. Kira has 3 blocks with the letter A, 3 blocks with the letter B, and 3 blocks with the letter C. She puts these 9 blocks in a sequence. She wants to have as many distinct distances between blocks with the same letter as possible. For example, in the sequence ABCAABCBC the blocks with the letter A have distances 1,3 , and 4 between one another, the blocks with the letter B have distances 2,4 , and 6 between one another, and the blocks with the letter C have distances 2,4 , and 6 between one another. Altogether, we got distances of $1,2,3,4$, and 6 ; these are 5 distinct distances.
What is the maximum number of distinct distances that can occur?
