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Solutions

1. (a) The smallest possible number of circled numbers is 3. Fewer than 3 is not possible since in
each row at least one number is circled (and these are three different numbers).

On the right, a median table is shown in which only 3 numbers are circled.
In the rows, the numbers 7, 5, 3 are circled, in the columns the numbers
3, 5, 7, and on the diagonals the numbers 5 and 5. Together, these are
three different numbers: 3, 5, and 7. 3 1 6

2 5 8

4 9 7

(b) The largest possible number of circled numbers is 7. More than 7 is not possible, since the
numbers 9 and 1 are never circled, hence no more than 9− 2 = 7 numbers are circled.

On the right, a median table is shown in which 7 numbers are circled.
In the rows, the numbers 2, 6, 8 are circled, in the columns the numbers
7, 5, 3, and on the diagonals the numbers 4 and 5. Together, these are
the numbers 2, 3, 4, 5, 6, 7, 8. 8 9 3

7 5 6

4 1 2

2. Version for klas 5 & klas 4 and below

(a) If a1 = −3, we have a2 = a1+a1
a1+1 = −6

−2 = 3. Next, we find a3 = a2+a1
a2+1 = 0

4 = 0. Then, we

have a4 = a3+a1
a3+1 = −3

1 = −3. We see that a4 = a1. Since an+1 only depends on an and
a1, we see that a5 = a2 = 3, a6 = a3 = 0, a7 = a4 = −3, et cetera. In other words: the
sequence is periodic with period 3, and we see that

a2020 = a2017 = a2014 = · · · = a4 = a1 = −3.

(b) We will prove the statement by induction on n. We start with the induction basis n = 2.
We calculate a2 = a1+a1

a1+1 = 4
3 and see that indeed 4

3 6 an 6 3
2 holds.

Now suppose that for certain n = k > 2 we have proven that 4
3 6 an 6 3

2 . We will show
that these inequalities hold for n = k + 1 as well.

We first observe that

ak+1 =
ak + 2

ak + 1
= 1 +

1

ak + 1
.

From the induction hypothesis (43 6 ak 6 3
2) it follows that 7

3 6 ak + 1 6 5
2 , and hence that

2

5
6

1

ak + 1
6

3

7
.

By adding 1 to all parts of these inequalities, we find

7

5
6 1 +

1

ak + 1
= ak+1 6

10

7
.

Since 4
3 6 7

5 and 10
7 6 3

2 , we see that 4
3 6 ak+1 6

3
2 , completing the induction step.

2. Version for klas 6

(a) First, we determine for what starting values a1 > 0 the inequalities 4
3 6 a2 6 3

2 hold. Then,
we will prove that for those starting values, the inequalities 4

3 6 an 6 3
2 are also valid for all

n > 2.



First, we observe that a2 = a1+2
a1+1 and that the denominator, a1 + 1, is positive (since a1 > 0).

The inequality
4

3
6 a2 =

a1 + 2

a1 + 1
6

3

2
,

is therefore equivalent to the inequality

4
3(a1 + 1) 6 a1 + 2 6 3

2(a1 + 1),

as we can multiply all parts in the inequality by the positive number a1 + 1. Subtracting
a1 + 2 from all parts of the inequality, we see that this is equivalent to

1
3a1 −

2
3 6 0 6 1

2a1 −
1
2 .

We therefore need to have 1
3a1 6 2

3 (i.e. a1 6 2), and 1
2 6 1

2a1 (i.e. 1 6 a1). The starting
value a1 must therefore satisfy 1 6 a1 6 2.

Now suppose that 1 6 a1 6 2, so that a2 satisfies 4
3 6 a2 6 3

2 . Looking at a3, we see that
a3 = a2+2

a2+1 . That is the same expression as for a2, only with a1 replaced by a2. Since a2

also satisfies 1 6 a2 6 2, the same argument now shows that 4
3 6 a3 6 3

2 .

We can repeat the same argument to show this for a4, a5, etcetera. Hence, we find that
4
3 6 an 6 3

2 holds for all n > 2. The formal proof is done using induction: the induction
basis n = 2 has been shown above. For the induction step, see the solution of part (b) of
the version for klas 5 & klas 4 and below. The result is that all inequalities hold if and only
if 1 6 a1 6 2.

(b) Let’s start by computing the first few numbers of the sequence in terms of a1. We see that

a2 =
a1 − 3

a1 + 1
and a3 =

a2 − 3

a2 + 1
=

a1−3
a1+1 − 3
a1−3
a1+1 + 1

=
a1 − 3− 3(a1 + 1)

a1 − 3 + (a1 + 1)
=
−2a1 − 6

2a1 − 2
=
−a1 − 3

a1 − 1
.

Here, it is important that we do not divide by zero, that is, a1 6= −1 and a2 6= −1. The
first inequality follows directly from the assumption. For the second inequality we consider
when a2 = −1 holds. This is the case if and only if a1− 3 = −(a1 + 1), if and only if a1 = 1.
Since we assumed that a1 6= 1, we see that a2 6= −1. The next number in the sequence is

a4 =
a3 − 3

a3 + 1
=

−a1−3
a1−1 − 3
−a1−3
a1−1 + 1

=
−a1 − 3− 3(a1 − 1)

−a1 − 3 + (a1 − 1)
=
−4a1
−4

= a1.

Again, we are not dividing by zero since a3 = −1 only holds when −a1− 3 = −a1 + 1, which
is never the case.

We see that a4 = a1. Since an+1 only depends on an, we see that a5 = a2, a6 = a3, a7 = a4,
et cetera. In other words: the sequence is periodic with period 3, and we see that

a2020 = a2017 = a2014 = · · · = a4 = a1.

To conclude: indeed we have a2020 = a1 for all starting values a1 unequal to 1 and −1.

3. Version for klas 4 & below

(a) Since AD and BC are parallel, we have (F angles): ∠CMN = ∠DAM = 1
2∠DAB. Since

DN and AB are parallel, we have (Z angles): ∠CNM = ∠NAB = 1
2∠DAB. It follows that

∠CMN = ∠CNM , so triangle CMN is isosceles with apex C. We obtain |CM | = |CN |.
Line segments OC, ON , and OM are radii of the same circle, and therefore of equal length.
Triangles OCM and OCN are therefore congruent (three pairs of equal sides).

(b) To show that ∠OBC = ∠ODC, we will show that triangles OBC and ODN are congruent.
We will do this using the ZHZ-criterion. We will show that ∠OND = ∠OCB, and
|ON | = |OC|, and |DN | = |BC|.
The equality |ON | = |OC| follows since ON and OC are radii of the same circle. In part
(a), we saw triangles OCM and OCN are congruent. Furthermore, these two triangles are



isosceles (|OC| = |OM | and |OC| = |ON |). Hence, the four base angles ∠ONC, ∠OCN ,
∠OMC, and ∠OCM are equal. We see that ∠OND = ∠OCB. The only thing we still
need to show is that |DN | = |BC|.
Observe that ∠BMA = ∠DAM (Z angles) and ∠DAM = ∠MAB (as AM is the angular
bisector of A). We find that ∠BMA = ∠MAB. Triangle AMB is therefore isosceles and we
have |AB| = |BM |. We previously saw that |CM | = |CN |, and we also have |AB| = |CD|
as ABCD is a parallelogram. We therefore obtain

|DN | = |CD|+ |CN | = |AB|+ |CM | = |BM |+ |CM | = |BC|,

which concludes the proof.

3. Version for klas 5 & klas 6

As an intermediate step, we first show that triangles OCM and OCN are congruent. The
solution for this step can be found in part (a) of the version for klas 4 & below. The remainder
of the solution is part (b) of that version.

4. Version for klas 4 & below

We may assume that a > 0. If (x, y) is a solution, then (−x,−y) is a solution as well. Therefore,
we may for now assume that x + y > 0 and, at the end, add for each solution (x, y) the pair
(−x,−y) to the list of solutions.

We see that
p = (x + y)2 − a2 = (x + y + a)(x + y − a).

It follows that x + y + a is non-zero, and hence positive. Then x + y− a must be positive as well.
The prime number p can be written as a product of two positive integers in only two ways: 1 · p
and p · 1. Since x + y + a > x + y − a, we must have x + y + a = p and x + y − a = 1. Adding
these two equations, we obtain 2x + 2y = p + 1. We also know that x2 + y2 + 1 = p + 1, so we
obtain 2x + 2y = x2 + y2 + 1. By bringing all terms to the right-hand side and adding 1 to both
sides, we find

1 = x2 + y2 − 2x− 2y + 2 = (x− 1)2 + (y − 1)2.

We now have two perfect squares that add up to 1. This means that one of the squares is equal
to 1 and the other is equal to 0. Hence, (x − 1)2 = 0 and (y − 1)2 = 1, or (x − 1)2 = 1 and
(y − 1)2 = 0. In the first case we have x− 1 = 0 and y − 1 = ±1, so (x, y) is equal to (1, 2) or
(1, 0). In the second case we have x− 1 = ±1 and y − 1 = 0, so (x, y) is equal to (2, 1) or (0, 1).
Since 02 + 12 = 1 is not a prime number, (1, 0) and (0, 1) are eliminated as candidate solutions.

We now check whether (1, 2) and (2, 1) are solutions. In both cases we find p = x2+y2 = 12+22 = 5,
which is a prime number as required. Taking a = 2, we have (x + y)2 − a2 = 32 − 22 = 5, which
is indeed equal to p.

Adding the solutions obtained by replacing (x, y) by (−x,−y), we find a total of four solutions,
namely

(1, 2), (2, 1), (−1,−2), (−2,−1).

4. Version for klas 5 & klas 6

We have 2xy = a2 for some nonnegative integer a, and x2 + y2 = p for some prime number p.

Since a prime number is never a perfect square, we see that x, y 6= 0. Since 2xy is a perfect
square, it follows that x and y must both be positive, or both be negative. If (x, y) is a solution,
then so is (−x,−y). Therefore, we may for now assume that x and y are positive, and at the
end, add for each solution (x, y) the pair (−x,−y) to the list of solutions.

Combining 2xy = a2 and x2 + y2 = p yields (x + y)2 = x2 + y2 + 2xy = p + a2. By bringing a2

to the other side, we find

p = (x + y)2 − a2 = (x + y + a)(x + y − a).



Since x + y + a is positive, also x + y − a must be positive. The prime number p can be written
as a product of two positive integers in only two ways: 1 · p and p · 1. Since x+ y + a > x+ y− a,
we obtain x + y + a = p and x + y − a = 1.

Adding these two equations, we get 2x + 2y = p + 1. We also know that x2 + y2 + 1 = p + 1, so
2x + 2y = x2 + y2 + 1. By bringing all terms to the right-hand side and adding 1 to both sides,
we obtain

1 = x2 + y2 − 2x− 2y + 2 = (x− 1)2 + (y − 1)2.

We now have two perfect squares that add up to 1. This implies that one of the squares is 0 and
the other is 1. So (x− 1)2 = 0 and (y − 1)2 = 1, or (x− 1)2 = 1 and (y − 1)2 = 0. As x and y
are positive, we find two possible solutions: x = 1 and y = 2, or x = 2 and y = 1. In both cases
2xy = 4 is a perfect square and x2 + y2 = 5 is a prime number. It follows that both are indeed
solutions.

Adding the solutions obtained by replacing (x, y) by (−x,−y), we obtain a total of four solutions
(x, y), namely

(1, 2), (2, 1), (−1,−2), (−2,−1).

5. Suppose that on a given day, Sabine is left with n2 shells, where n > 1. Then the next day, she
will give n shells to her sister and will be left with n2−n shells. This is more than (n− 1)2, since

(n− 1)2 = n2 − 2n + 1 = (n2 − n)− (n− 1) < n2 − n

as n > 1. The next day, she therefore gives n−1 shells to her sister and is left with n2−n−(n−1) =
(n− 1)2 shells, again a perfect square. We see that the numbers of shells that Sabine is left with
are alternately a perfect square and a number that is not a perfect square.

Let d be the first day that Sabine is left with a number of shells that is a perfect square, say n2

shells. Then days d + 2, d + 4, . . . , d + 18 are the second to tenth day that the remaining number
of shells is a perfect square (namely (n − 1)2, (n − 2)2, . . . , (n − 9)2 shells). We conclude that
d + 18 = 28, and hence d = 10.

On day 26 the number of remaining shells is at least 1000, but on days 27 and 28 this number
is less than 1000. We see that (n − 9)2 < 1000 6 (n − 8)2. As 312 < 1000 6 322, we see that
n− 8 = 32, and hence n = 40. We find that day 10 is the first day that the number of remaining
shells is a perfect square, and that this number is 402.

In the remainder of the proof, we will use the following observation.

Observation. On any day, starting with more shells, means that Sabine will have more (or just
as many) shells left after giving shells to her sister.

Indeed, suppose that Sabine starts the day with x shells, say n2 6 x < (n + 1)2. After giving
away shells, she will be left with x− n shells. If she had started with x + 1 shells instead of x,
she would have been left with x + 1− n > x− n or x + 1− (n + 1) = x− n shells.

Let x be the number of shells remaining on day 8. The obvious guess x = 412 = 1681 is incorrect
as x cannot be a perfect square. We therefore try x = 412 − 2, x = 412 − 1, and x = 412 + 1.
The table shows the number of shells remaining on day 8, 9, and 10.

day 8 day 9 day 10

412 − 2 = 1679 1679− 40 = 1639 1639− 40 = 1599
412 − 1 = 1680 1680− 40 = 1640 1640− 40 = 1600
412 + 1 = 1682 1682− 41 = 1641 1641− 40 = 1601

We see that the case x = 1679 is ruled out because it would imply that fewer than 402 = 1600
shells are left on day 10. By the above observation, this also rules out the case x < 1679. The



case x = 1682 is ruled out because it would imply that more than 402 shells will be left on day 10.
Hence, also x > 1682 is ruled out. The number of shells left on day 8 must therefore be 412 − 1.

To follow the pattern back in time, we consider the case that the number of remaining shells is
just shy of a perfect square. Suppose that on a given day the number of remaining shells is n2−a,
where 1 6 a < n. Then the following day, the number of remaining shells is n2 − a − (n − 1).
Since a < n, we have n2 − a− (n− 1) > n2 − n− (n− 1) = (n− 1)2. The day after that, the
number of remaining shells must therefore be n2 − a− (n− 1)− (n− 1) = (n− 1)2 − (a− 1).

So if Sabine originally had 452 − 5 shells, then the number of remaining shells on days 2, 4, 6,
and 8 are 442 − 4, 432 − 3, 422 − 2, and 412 − 1, respectively. This gives us a solution.

If Sabine originally had 452 − 4 shells, then she would be left with too many shells on day 8,
namely 412 − 0. The original number of shells could therefore not have been 452 − 4 or more.

If Sabine originally had 452− 6 shells, then she would be left with too few shells on day 8, namely
412 − 2. The original number of shells could therefore not have been 452 − 6 or fewer.

We conclude that the only possibility is that Sabine started with a collection of 452 − 5 = 2020
shells.
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