
Final Round klas 5 & klas 4 and below

Dutch Mathematical Olympiad
Friday 16 September 2016
Technische Universiteit Eindhoven

• Available time: 3 hours.

• Each problem is worth 10 points. Points can also be awarded to partial solutions.

• Write down all the steps of your argumentation. A clear reasoning is just as important as the final
answer.

• Calculators and formula sheets are not allowed. You can only bring a pen, ruler (set square), compass
and your math skills.

• Use a separate sheet for each problem and also hand in your draft sheets (for each problem
separately!). Good luck!

1. (a) On a long pavement, a sequence of 999 integers is written in chalk. The numbers need
not be in increasing order and need not be distinct. Merlijn encircles 500 of the numbers
with red chalk. From left to right, the numbers circled in red are precisely the numbers
1, 2, 3, . . . , 499, 500. Next, Jeroen encircles 500 of the numbers with blue chalk. From left
to right, the numbers circled in blue are precisely the numbers 500, 499, 498, . . . , 2, 1.
Prove that the middle number in the sequence of 999 numbers is circled both in red and in
blue.

(b) Merlijn and Jeroen cross the street and find another sequence of 999 integers on the
pavement. Again Merlijn circles 500 of the numbers with red chalk. Again the numbers
circled in red are precisely the numbers 1, 2, 3, . . . , 499, 500 from left to right. Now Jeroen
circles 500 of the numbers, not necessarily the same as Merlijn, with green chalk. The
numbers circled in green are also precisely the numbers 1, 2, 3, . . . , 499, 500 from left to
right.
Prove: there is a number that is circled both in red and in green that is not the middle
number of the sequence of 999 numbers.

2. For an integer n > 1 we consider sequences of 2n numbers, each equal to 0, −1 or 1. The sum
product value of such a sequence is calculated by first multiplying each pair of numbers from the
sequence, and then adding all the results together.

For example, if we take n = 2 and the sequence 0, 1, 1,−1, then we find the products 0 · 1, 0 · 1,
0 · −1, 1 · 1, 1 · −1, 1 · −1. Adding these six results gives the sum product value of this
sequence: 0 + 0 + 0 + 1 + (−1) + (−1) = −1. The sum product value of this sequence is therefore
smaller than the sum product value of the sequence 0, 0, 0, 0, which equals 0.
Determine for each integer n > 1 the smallest sum product value that such a sequence of 2n
numbers could have.
Attention: you are required to prove that a smaller sum product value is impossible.

3. Find all possible triples (a, b, c) of positive integers with the following properties:

• gcd(a, b) = gcd(a, c) = gcd(b, c) = 1;

• a is a divisor of a + b + c;

• b is a divisor of a + b + c;

• c is a divisor of a + b + c.

(Here gcd(x, y) is the greatest common divisor of x and y.)

PLEASE CONTINUE ON THE OTHER SIDE



4. In a quadrilateral ABCD the intersection of the diagonals is called P . Point X is the orthocentre
of triangle PAB. (The orthocentre of a triangle is the point where the three altitudes of the
triangle intersect.) Point Y is the orthocentre of triangle PCD. Suppose that X lies inside
triangle PAB and Y lies inside triangle PCD. Moreover, suppose that P is the midpoint of line
segment XY .
Prove that ABCD is a parallelogram.
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5. Bas has coloured each of the positive integers. He had several colours at his disposal. His
colouring satisfies the following requirements:

• each odd integer is coloured blue;

• each integer n has the same colour as 4n;

• each integer n has the same colour as at least one of the integers n + 2 and n + 4.

Prove that Bas has coloured all integers blue.
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