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Solutions

B-problems

B1. 19 An envelope with width 30 cannot fit on any other envelope, and an envelope
with height 20 cannot fit on any other envelope either. So for the envelopes with dimensions
21× 20, 22× 20, . . . , 30× 20, 30× 19, . . . , 30× 11, Milou has to make 19 different piles, with
these envelopes at the bottom. We can see that the rest of the envelopes can all be put on top of
this as follows. For each envelope, calculate the difference between width w and height h. This
difference is equal to a number from 1 through 19, and for all 19 envelopes Milou has already
placed, every difference occurs exactly once. All envelopes for which w − h is equal, fit on the
same pile. For example, the pile for w − h = 5 looks like this from bottom to top: 25 × 20,
24× 19, 23× 18, 22× 17 and 21× 16. So Milou can put all the envelopes in 19 piles and less
piles are impossible.

B2. 712 Let us systematically count how many digits the page numbers contain, not
yet taking into account the sheet that is torn out. Pages 1 through 9 have one digit each, so a
total of nine digits. Pages 10 through 99 are 90 pages with two digits each, that is 90 · 2 = 180
digits in total. So for pages 1 through 99, this adds up to 189 digits.

Call the total number of digits on the front and back of the torn-out sheet x. So originally (before
tearing out) the book had 2024 + x digits. So the number of digits on pages 100 through n, on
the one hand, equals (2024 + x)− 189 = 1835 + x. On the other hand, since each of the pages
100 through n has three digits, that number of digits is equal to 3(n− 99). Since 2 ⩽ x ⩽ 6, this
number is equal to one of the numbers 1837 through 1841. This number must also be divisible
by 3, so only 1839 is possible. We find that 3(n− 99) = 1839 and so n = 712.

B3. 16 Denote the number of students in the class by n. Since there are at most 25

pupils in the class, each pupil is at least 4% of the total. The 94% pupils who live more than 1
km from school must be n− 1 pupils: after all, they are not all n pupils, and n− 2 pupils can
only be at most 92% of the total. Hence, one student of the class is 6% of the class, rounded.

We found that one student corresponds with a percentage between 5.5 and 6.5. This means
that 31% corresponds to 5 students, because 4 students give at most 4 · 6.5 = 26 percent and 6
students give at least 6 · 5.5 = 33 percent.

Hence, five students corresponds to a percentage between 30.5 and 31.5. That means that 15
students contribute to at most 15

5 · 31.5 < 95 percent and 17 students to at least 17
5 · 30.5 >

17 · 6 = 102 percent. Thus the number of students is equal to 16.

B4. 4
7 We first look at some smaller cases with only 0, 1 or 2 times the digit combination
84:
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7
=

4

7
,

484

847
=

4 · 121
7 · 121

=
4

7
,

48484

84847
=

4 · 12121
7 · 12121

=
4

7
.

Also, for our very large number A, we immediately see that A = 484 . . . 84 = 4 · 121 . . . 21, while
we can see B equals 7 · 121 . . . 21. It follows then that A

B = 4
7 .
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24 Because of symmetry, the line segments
from M to the vertices divide the decagon into ten congru-
ent triangles. The angle at M of such a triangle is equal to
360◦

10 = 36◦ (represented in the figure by ◦) and the other

two angles which are the same size, are 180◦−36◦

2 = 72◦

(represented in the figure by ×). It follows that the an-
gles of the original decagon are each 2 · 72◦ = 144◦. For
the rest of the solution, we are not going to look at the
whole decagon again, only at the “diamond” given by the
pentagon ABCDM . See the picture to the right.

First, we look at quadrilateral ABCD. The sum of the four angles is 360◦. The angles at B and
C are 144◦ and thus the angles at A and D, which are equal because of the symmetry of the
decagon, are 36◦. This means that the line segment AD divides the angles ∠MAB and ∠MDC
into two equal pieces of 36◦. This also implies ∠MAS = 36◦ and ∠MDS = 36◦.

Now consider triangle SDC. Since the sum of the angles is equal to 180◦, we find that angle
∠CSD = 180◦−∠CDS−∠MCD = 180◦−36◦−72◦ = 72◦ and the triangle is therefore isosceles.
It follows that |SD| = |CD| = 12, the side of the decagon (marked with two dashes in the figure).

Then consider triangle MAS. Because of opposite angles, ∠MSA = 72◦. We already saw that
∠MAS = 36◦. Because of the angle sum of 180◦ in triangle MAS, we have ∠AMS = 72◦ and
so this triangle too is isosceles. It follows that |SA| = |MA|, the radius of the decagon (marked
with three dashes in the figure).

We consider the triangle MDS. We already saw that ∠MDS = 36◦, and at the beginning we
also saw that ∠DMS = 36◦. This is again an isosceles triangle, so |MS| = |DS| and we already
saw that this is equal to 12.

Finally, we can calculate the difference between the perimeter of quadrilateral ABCD and the
perimeter of triangle DMS:

(|AB|+ |BC|+ |CD|+ |DA|)− (|DM |+ |MS|+ |SD|)
= (12 + 12 + 12 + (12 + |SA|))− (|DM |+ 12 + 12)

= 24 + |MA| − |MD|
= 24.

C-problems

C1. Let’s start with n = 9. Then the grasshopper can jump as follows: 1−3−6−8−5−2−4−7−9.
You can see that the grasshopper jumps to larger numbers first, then to smaller numbers each
time, and then to larger numbers again. This ‘zigzag’ pattern can be used in general.

We distinguish different cases for n based on the remainder of n when dividing by 3. If n = 3k,
then the grasshopper can jump as follows:

1; 3, 6, . . . , 3(k − 1); 3(k − 1) + 2, 3(k − 2) + 2, . . . , 5, 2; 4, 7, . . . , 3(k − 1) + 1; 3k.

The grasshopper jumps over triples on the way out, over triples plus 2 on the way back, and
then over triples plus 1 on the second way out.

If n = 3k + 1, then the grasshopper can jump as follows:

1; 3, 6, . . . , 3k; 3k − 2, 3(k − 1)− 2, . . . , 7, 4; 2, 5, 8, . . . , 3(k − 1) + 2; 3k + 1.

Finally, for n = 3k + 2, we find that the grasshopper can jump as follows:

1, 3, 6, 4; 2, 5, 8, . . . , 3(k − 1) + 2; 3k + 1, 3(k − 1) + 1, . . . , 7; 9, . . . , 3k; 3k + 2.



Because n ⩾ 9 we have that k ⩾ 3. In the solutions above for k ⩾ 3 we see that every leg of the
‘zigzag’ is nonempty, so a solution exists.

There are other ways to solve this problem. For example, you can also give a solution for
n = 9, 10, 11, 12 and 13 and then make a solution for n+ 5 by starting with a solution for n and
adding n+ 2, n+ 4, n+ 1, n+ 3, n+ 5 to it.

C2. (a) Add up the positions of the characters ‘L’, where the leftmost character in the word has
position 1 and the rightmost character has position n. We call this number the L-sum of a
word. For each word, the L-sum is a non-negative integer. Furthermore, for every move
Eva makes, the L-sum becomes one lower. Indeed, when switching ‘L’ and ‘R’, the position
of the ‘L’ that Eva switches becomes one lower. Therefore, since the L-sum cannot become
negative, Eva can always do only a finite number of turns.

(b) Of all the possible words of length n that Eva considers, the L-sum is the largest with the
word ‘RR. . . RL. . . LL’, where all ℓ characters ‘L’ are on the right side of the word. On the
contrary, the L-sum is smallest for the word ‘LL. . . LRR. . . R’, where all ℓ characters ‘L’ are
on the left side of the word. In this word, Eva cannot do any more turns, because there is
nowhere an ‘L’ directly to the right of an ‘R’.

The left-most ‘L’ in ‘RR. . . RL. . . LL’ and the left-most ‘L’ in ‘L. . . LRR. . . R’ differ n− ℓ
from each other in position. The same is true for all subsequent characters ‘L’, from left to
right. Thus, the difference in L-sum between these two words is ℓ(n− ℓ). We already saw
that the L-sum of a word becomes exactly one smaller at each turn: an upper bound on the
maximum number of turns is thus ℓ(n− ℓ).

Eva can also actually do ℓ(n− ℓ) turns if she starts with the word ‘RR. . . RL. . . LL’. For the
first n− ℓ turns, she uses only the leftmost ‘L’, and the result is the word ‘LRR. . . RL. . . LL’
with ℓ− 1 times an ‘L’ on the right side. Next, she chooses the second ‘L’ from the left, and
in n− ℓ turns she makes the word ‘LLRR. . . RL. . . LL’ with ℓ− 2 times an ‘L’ on the right
side. Eva does this with all ℓ the characters ‘L’. In total, she can take ℓ(n− ℓ) turns before
she ends with ‘L. . . LRR. . . R’.

(c) In the previous part of the problem, we already saw that Eva can do at most ℓ(n− ℓ) turns.
Consider the function f(ℓ) = ℓ(n− ℓ). This is a quadratic function with zeros at ℓ = 0 and
ℓ = n. So the maximum is at ℓ = 1

2n. If n is even, then Eva can do as many turns as possible
at ℓ = n

2 . (The number of turns is then f
(
n
2

)
= 1

4n
2.) If n is odd, the maximum of this

function is not at an integer value of ℓ and we see that Eva can do as many turns as possible
at ℓ = n−1

2 and ℓ = n+1
2 . (The number of turns is then f

(
n−1
2

)
= f

(
n+1
2

)
= 1

4(n
2 − 1).)
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