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Introduction

The selection process for IMO 2022 started in The Netherlands with a first
round in January 2021, held locally at all participating schools. The paper
consists of eight multiple choice questions and four open questions, to be
solved within 2 hours. This year 3403 students from 229 secondary schools
participated in this 60th edition of the Dutch Mathematical Olympiad.

The 734 best students were invited to the second round, which was held at
twelve universities throughout the country a few months later, March 2021.
This round consists of five open questions, and two problems for which the
students have to give extensive solutions and proofs. The contest lasts 2.5
hours.

The 138 best students were invited to the final round, with the addition
of some outstanding participants in the Kangaroo math contest or the Py-
thagoras Olympiad were invited. The final is preceded by up to four training
sessions at the universities to help them prepare for their participation in
the final round.

The final, in September, contains five problems for which the students has
to give extensive solutions and proofs. They are allowed 3 hours for this
round. After the prizes are awarded in the beginning of November, the
Dutch Mathematical Olympiad is concluded.

The 30 most outstanding candidates of the Dutch Mathematical Olympiad
are invited to an intensive seven-month training programme. The students
meet twice for a three-day training camp, three times for a single day,
and finally for a six-day training camp in the beginning of June. They
also work on weekly problem sets to be sent in to a personal trainer by email.

In February a team of four girls was chosen from the training group to
represent the Netherlands in April at the EGMO in Hungary. At this event
(which was the first on site one in quite a while) the Dutch team won one
silver medal and an honourable mention. For more information about the
EGMO (including the 2022 paper), see www.egmo.org.

In March a selection test of 3.5 hours is held to determine the ten students
from the training program which are sent to the Benelux Mathematical
Olympiad (BxMO) held in May. In a historic event each of the students of
the Dutch team 2022 managed to take home the honours: two gold medals,
five silver medals and three bronze medals. For more information about the
BxMO (including the 2022 paper), see www.bxmo.org.

Begin June the team for the International Mathematical Olympiad is selec-
ted by three team selection tests on three consecutive days, each lasting 4
hours. In addition to the six team members a seventh, young, promising

1



student is selected to accompany the team to the IMO as an observer C.
Three weeks later, the team had a training camp north of Oslo from July 1
till 9.

For younger students the Junior Mathematical Olympiad was held in Septem-
ber 2021 at the VU University Amsterdam. The students invited to par-
ticipate in this event were the 100 best students of grade 2 and grade 3
of the popular Kangaroo math contest. The competition consisted of two
one-hour parts, one with eight multiple choice questions and one with eight
open questions.

We are grateful to Jinbi Jin and Raymond van Bommel for the composition
of this booklet and the translation into English of most of the problems and
the solutions.

Dutch delegation
The Dutch team for IMO 2022 consists of

• Lance Bakker (15 years old)
– silver medal at BxMO 2022

• Jelle Bloemendaal (18 years old)
– bronze medal at BxMO 2019, silver medal at BxMO 2020 and

2021
– (virtual) observer C at IMO 2020, bronze medal at IMO 2021

• Mads Kok (15 years old)
– silver medal at BxMO 2022

• Casper Madlener (17 years old)
– silver medal at BxMO 2020, gold medal at BxMO 2022
– (virtual) observer C at IMO 2020, participant at IMO 2021

• Lars Pos (18 years old)
– bronze medal at BxMO 2021, gold medal at BxMO 2022
– (virtual) observer C at IMO 2021

• Kees den Tex (18 years old)
– participant at BxMO 2020, gold medal at BxMO 2021, silver

medal at BxMO 2022
– honourable mention at IMO 2021

Also part of the IMO selection, but not officially part of the IMO team, is:

• Wouter Zandsteeg (17 years old)
– bronze medal at BxMO 2022

The team is coached by

• Quintijn Puite (team leader), Eindhoven University of Technology
• Johan Konter (deputy leader), Leiden University
• Ward van der Schoot (observer B), Applied Cryptography and Quantum

Applications, TNO
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First Round, January/February 2021

Problems

A-problems

1. For the integers a, b, c, and d the difference between a and b equals 2, the
difference between b and c equals 3, and the difference between c and d
equals 4. Which of the following values cannot be the difference between a
and d?

A) 1 B) 3 C) 5 D) 7 E) 9

2. 100

x

10 12

In each square of the top three rows in the pyramid
on the right, the number written in that square
equals the sum of the numbers in the two squares
below it. For three of the squares, the numbers
written in them are given.
What number must be written in the square with the x in it?

A) 17 B) 20 C) 23 D) 26 E) 39

3. How many triangles are there in the figure on the right?

A) 32 B) 36 C) 40 D) 44 E) 64

4.

4

3

1

?

8

8

6

In each square of the field on the right, there is a
high-rise building of height 1, 2, 3, 4, or 5, such that
the following conditions are satisfied.

• In each (horizontal) row or (vertical) column,
each height occurs exactly once.

• The numbers on the side of the square are the
sums of the heights of the visible buildings.
This concerns the buildings in this particular
row or column that are (partially) visible
in the side view from the number on the
side. For example, if the heights 1, 3, 2, 5,
and 4 occur in this order in a row, then the
buildings of heights 1, 3, and 5 are visible
from the left side, and the buildings of heights
4 and 5 are visible from the right side.
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What is the height of the building on the square with
the question mark?

A) 1 high B) 2 high C) 3 high D) 4 high E) 5 high

5. The number 1 is written on the blackboard. A turn consists of wiping out
the number on the board and replacing it by the double of the number,
or by the number one smaller. For example, we can replace 1 by 2 (the
double) or 0 (one smaller), and if 5 is on the board, we can replace it by 10
or 4.
What is the minimum number of turns needed in order to write the number
2021 on the board?

A) 14 B) 15 C) 16 D) 17 E) 18

6.
68◦

?
A B

C

E
D

F

In triangle ABC, a point D lies on side BC and
a point E lies on side AC such that the line seg-
ments BD, DE, and AE have the same length.
The point F is the intersection between the line
segments AD and BE. Angle C is 68◦.
What is the size of angle F in triangle AFB?

A) 120◦ B) 121◦ C) 122◦ D) 123◦ E) 124◦

7. The integers 1 to n are written on the board. One of the numbers is wiped
out. The average of the remaining numbers is 11 1

4 .
Which number has been wiped out?

A) 6 B) 7 C) 11 D) 12 E) 21

8. We order the positive odd integers as follows:

co
lu

m
n

1

co
lu

m
n

2

co
lu

m
n

3

co
lu

m
n

4

co
lu

m
n

5

co
lu

m
n

6

...
row 1 1 3 11 13 29 31 . . .
row 2 5 9 15 27 33 . . .
row 3 7 17 25 35 . . .
row 4 19 23 37 . . .
row 5 21 39 . . .
row 6 41 . . .
. . . . . .
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For each odd number we can determine in which row and column it is
placed. For example, the number 35 is placed in row 3 and column 4.
What number is placed in row 22 and column 24?

A) 2021 B) 2023 C) 2025 D) 2027 E) 2029

B-problems
The answer to each B-problem is a number.

1. We have two integers consisting of two digits, and both numbers do not
start with a 0. If you add these numbers, you get the number S. If you
interchange the two digits of both numbers and add the new numbers, you
get 4S.
Determine all possible pairs of two-digit numbers satisfying these constraints.
Make sure to clearly indicate in your answer which numbers form a pair.

2. In the diagram on the right we write a number in
each circle. The numbers do not have to be integers
or be positive. Next to each line segment, we write
the sum of the two numbers in the circles on the end
of the line segment. There are two quadruples of
numbers that we can write in the circles, such that
the numbers next to the line segments are exactly
the numbers 0, 1, 2, 3, 4, and 5. For both of these quadruples, we multiply
the four numbers in the circles with each other.
Which two results can we get from this multiplication?

3. A circle of radius 1 and a square are given, such that the
circle is tangent to one side of the square and also two of
the vertices of the square lie on the circle.
What is the length of a side of the square?

4. We consider security codes consisting of four digits. We say that one code
dominates another code if each digit of the first code is at least as large as
the corresponding digit in the second code. For example, 4961 dominates
0761, because 4 ≥ 0, 9 ≥ 7, 6 ≥ 6, and 1 ≥ 1. We would like to assign a
colour to each security code from 0000 to 9999, but if one code dominates
another code then the codes cannot have the same colour.
What is the minimum number of colours that we need in order to do this?
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Solutions

A-problems

1. D) 7 5. B) 15

2. D) 26 6. E) 124◦

3. D) 44 7. A) 6

4. B) 2 8. D) 2027

B-problems

1. {14, 19}, {15, 18}, and {16, 17}

2. −6 and − 21
16

3. 8
5

4. 37
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Second Round, March 2021

Problems

B-problems
The answer to each B-problem is a number.

B1. Peter gets bored during the lockdown, so he decides to write numbers the
whole day. He makes a sequence of numbers starting with 0, 1 and −1, and
then going on indefinitely. On the next line he writes the same sequence of
numbers, but shifted one place to the right. On the third line he writes
again the same sequence of numbers, shifted another place to the right. He
adds all three numbers standing in a vertical column. (He skips the first
two places so he starts with −1 + 1 + 0.) The answer for every column is
the next multiple of three. Peter’s paper hence looks like this:

0 1 −1 . . . . . . . . . . . .
0 1 −1 . . . . . . . . .

+ 0 1 −1 . . . . . .
0 3 6 9 12

The first number in the uppermost sequence is 0, the second number is
1, the third number is −1, etcetera. Determine the 2021st number in the
uppermost sequence.

B2. An integer n is a combi number if each pair of distinct digits from the set of
all possible digits 0 to 9 appear at least once in the number as neighbouring
digits. For example, in a combi number the digits 3 and 5 have to appear
somewhere next to each other. It does not matter whether they appear in
the order 35 or 53. We take the convention that a combi number never
starts with the digit 0.
What is the smallest possible number of digits of a combi number?

B3. A big rectangle is divided in small rectangles
that are twice as high as they are wide. The
rectangle is 10 of these small rectangles wide,
as in the figure on the right. In this figure you
can see some squares of different sizes.
How many small rectangles high is the figure
if we can find exactly 345 squares in it?
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B4.

4

7

4

7 7

?

A parallelogram has two sides of length 4 and two sides
of length 7. Also, one of the diagonals has length 7.
(Attention: the picture has not been drawn to scale.)
What is the length of the other diagonal?

B5. ˇ “ ˇ “ ˇ “
Three wheels are pushed together so they
don’t slip if we turn them. The circum-
ferences of the wheels are 14, 10, and 6
cm, respectively. On each wheel an arrow
is drawn, pointing downwards. Someone
turns the big wheel and the other wheels
turn with it. This stops at the first moment all arrows point downwards
again. Every time one of the arrows is pointing up, a whistle sounds. If
two or three arrows point up at the same time, only one whistle sounds.
How many whistles sound in total?

C-problems For the C-problems not only the answer is important; you also have to

describe the way you solved the problem.

C1. Around a round table n ≥ 3 players are sitting. The game leader divides n
coins among the players, in such a way that not everyone gets exactly one
coin. Any player can see the number of coins of each other player.
Every 10 seconds, the game leader rings a bell. At that moment, each
player looks how many coins their two neighbours have. Then they all do
the following at the same time:

• If a player has more coins than at least one of their neighbours, the
player gives away exactly one coin. They give this coin to the neighbour
with the smallest number of coins. If both of their neighbours have
the same number of coins, they give the coin to the neighbour on the
left.

• If a player does not have more coins than at least one of their neigh-
bours, the player does nothing and waits for the next round.

The game ends if everyone has exactly one coin.

(a) For each n ≥ 3, find a distribution of the coins at the start such that
the game will never stop (and prove that the game does not stop for
your starting distribution).

(b) For each n ≥ 4, find a distribution of the coins at the start of the
game such that the game will stop (and prove that the game stops for
your starting distribution).
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C2.

B

2

F

C

4

A 5 3 D

E

We consider a triangle ABC and a point D on the
extended line segment AB on the side of B. The point
E lies on side AC such that the angles ∠DBC and
∠DEC are equal. The intersection of DE and BC
is F . Suppose that |BF | = 2, |BD| = 3, |AE| = 4,
and |AB| = 5. (Attention: the picture has not been
drawn to scale.)

(a) Prove that triangles 4ABC and 4AED are similar.

(b) Determine |CF |.

Solutions

B-problems

1. 2020 3. 15 5. 5

2. 50 4. 9

C-problems

C1. (a) Consider the situation where the first player has 2 coins, the second
player has 0 coins and all other players have 1 coin. This situation
looks as follows:

2 0 1 1 · · · 1 1︸ ︷︷ ︸
n−2 ones

For example, for n = 3 the starting distribution is 201. We see that
the first and the third player both give a coin to the second player.
This gives the distribution 120. This is exactly the distribution 201 if
you shift all players by one place. We see that the game never stops.
In this case the first player has to give a coin to the second player, the
third player has to give a coin to the left and all other players keep
their coin. We end with the following situation.

1 2 0 1 1 · · · 1 1︸ ︷︷ ︸
n−3 ones

This is exactly the same distribution as the starting distribution,
except now it is player 2 that has 2 coins and player 3 that has 0 coins.
If we continue playing, there will always be a player with 2 coins and
thus the game never stops. �
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(b) For n ≥ 4 we can consider the following starting distribution.

2 0 0 2 1 1 · · · 1 1︸ ︷︷ ︸
n−4 ones

For example, for n = 4 the starting distribution is 2002. In this case
there is no player with exactly one coin. The first and the last player
give a coin to the second and third player, respectively. Then the game
stops.
The first player has to give a coin to the right and the fourth player
has to give a coin to the left. All other players keep their coin. This
gives a situation where all players have 1 coin, thus the game stops. �

C2. (a) Because angles ∠AEC and ∠ABD are straight, we have

∠ABC = 180◦ − ∠DBC = 180◦ − ∠DEC = ∠AED.

Because angle A occurs in both triangles, triangles4ABC and4AED
have two equal angles, and hence the triangles are similar. �

(b) Because of the similarity of triangles 4ABC and 4AED, the angles
at C and D are equal. Together with the equality ∠DBF = ∠CEF ,
it follows that triangles 4DBF and 4CEF are similar.

In a pair of similar triangles, all pairs of sides have the same ratio.
Hence, the similarity of triangles 4DBF and 4CEF yields

|BF |
|EF |

=
|FD|
|FC|

=
|DB|
|CE|

. (1)

As triangles 4ABC and 4AED are similar, we find that

|AB|
|AE|

=
|BC|
|ED|

=
|CA|
|DA|

. (2)

Using equations (1) and (2), we can now find |CF |. Using the first and

last ratio in equation (2), we get 5
4 = |AB|

|AE| = |AC|
|AD| = 4+|EC|

5+3 . Hence,

we have |EC| = 6. If we substitute this in the first and third ratio
in equation (1), we get 2

|EF | = 3
6 . Hence, we have |EF | = 4. Using

the first and second ratio in (1), we now get that 2
4 = |FD|

|FC| hence

|FD| = 1
2 |CF |. Finally, we substitute this in the first and second ratio

in equation (2):

5

4
=
|AB|
|AE|

=
|BC|
|DE|

=
2 + |CF |

4 + 1
2 |CF |

.

Taking cross ratios and solving the remaining equation, we get
|CF | = 8. �
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Final Round, September 2021

Problems

1. Niek has 16 square cards that are white on one side and black on the other.
He puts down the cards to form a 4× 4-square. Some of the cards show
their white side and some show their black side. For a colour pattern he
calculates the monochromaticity as follows. For every pair of adjacent cards
that share a side he counts +1 or −1 according to the following rule: +1
if the adjacent cards show the same colour, and −1 if the adjacent cards
show different colours. Adding this all together gives the monochromaticity
(which might be negative). For example, if he lays down the cards as below,
there are 15 pairs of adjacent cards showing the same colour, and 9 such
pairs showing different colours.

The monochromaticity of this pattern is thus 15 · (+1) + 9 · (−1) = 6. Niek
investigates all possible colour patterns and makes a list of all possible
numbers that appear at least once as a value of the monochromaticity.
That is, Niek makes a list with all numbers such that there exists a colour
pattern that has this number as its monochromaticity.

(a) What are the three largest numbers on his list?
(Explain your answer. If your answer is, for example, 12, 9 and 6,
then you have to show that these numbers do in fact appear on the
list by giving a colouring for each of these numbers, and furthermore
prove that the numbers 7, 8, 10, 11 and all numbers bigger than 12 do
not appear.)

(b) What are the three smallest (most negative) numbers on his list?

(c) What is the smallest positive number (so, greater than 0) on his list?
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2. We consider sports tournaments with n ≥ 4 participating teams and where
every pair of teams plays against one another at most one time. We call
such a tournament balanced if any four participating teams play exactly
three matches between themselves. So, not all teams play against one
another.
Determine the largest value of n for which a balanced tournament with n
teams exists.

3. A frog jumps around on the grid points in the plane, from one grid point
to another. The frog starts at the point (0, 0). Then it makes, successively,
a jump of one step horizontally, a jump of 2 steps vertically, a jump of 3
steps horizontally, a jump of 4 steps vertically, et cetera. Determine all
n > 0 such that the frog can be back in (0, 0) after n jumps.

4.

A B

C

D
E

M

In triangle ABC we have ∠ACB = 90◦.
The point M is the midpoint of AB. The
line through M parallel to BC intersects
AC in D. The midpoint of line segment
CD is E. The lines BD and CM are per-
pendicular.

Be aware: the figure is not drawn to scale.

(a) Prove that triangles CME and ABD are similar.

(b) Prove that EM and AB are perpendicular.

5. We consider an integer n > 1 with the following property: for every positive
divisor d of n we have that d+ 1 is a divisior of n+ 1. Prove that n is a
prime number.

12



Solutions

1. (a) First note that there are 3 · 4 = 12 horizontal borders between two
cards, and also 12 vertical borders. Suppose that k of these borders
count as −1, then there are 24− k borders counting as +1. This gives
a monochromaticity of (24 − k) · (+1) + k · (−1) = 24 − 2k. Hence,
the monochromaticity is always an even number.

If all cards have the same colour, then all borders count as +1, and
we get the maximal monochromaticity of 24. Can 22 also occur as
the monochromaticity? No, and we will prove that by contradiction.
Suppose there is an assignment of cards having monochromaticity 22.
Then there has to be one border with −1 and the rest must count as
+1. In other words, all adjacent cards have the same colour, except
for one border. Consider the two cards at this border, and choose
two adjacent cards so that you obtain a 2× 2 square. For each pair
of cards, you can find such a 2 × 2 square. If you start on the left
top and go around the four cards in a circle (left top – right top –
right bottom – left bottom – left top), then you cross four borders.
Since you are starting and ending in the same colour, you must have
crossed an even number of borders where the colour is changing. This,
however, is in contradiction with the assumption that there is only
one border at which the two cards have different colours. We conclude
that the monochromaticity can never be 22.

The next possibilities for large monochromaticities are 20 and 18.
Then there have to be 2 or 3 borders between cards of different colours.
This can be achieved by the following colourings:

The three largest numbers on Niek’s list are 24, 20, and 18. �

(b) Suppose that we put the cards such that the monochromaticity is x.
Then we can turn half of the cards, as in a chess board pattern: we
turn a card if and only if all of the adjacent cards are not turned. With
this operation all borders between cards change sign, and we obtain a
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monochromaticity of −x. In other words, x is a possible value for the
monochromaticity if and only if −x is possible. Therefore, the three
smallest numbers on Niek’s list are the negatives of the three greatest
numbers: −24, −20, and −18. �

(c) We already proved that the monochromaticity is always an even
number. The smallest possible positive even number is 2. This
monochromaticity can be obtained by having 13 borders between
squares of the same colour, and 11 borders between squares of different
colours. There are many ways to achieve this, for example:

�

2. We will show that 5 is the largest value of n for which a balanced tournament
with n teams exists. First we will show that in a balanced tournament with
n ≥ 5 teams, there are no three teams that all play against one another in
the tournament.

Suppose towards a contradiction that we can find three teams in a balanced
tournament that all play against each other, say teams A, B and C. Because
n ≥ 5 there are two other teams, say D and E. Since A, B and C already
play three matches between them, there are no other matches between the
quadruple A, B, C and D. In other words: D does not play against A, B
and C. The same holds for team E. If we now consider the quadruple A,
B, D and E we see that there are at most two matches: A against B, and
possibly D against E. This means that we have found four teams such that
there are not exactly three matches between these four teams. This is a
contradiction.

Now we will show that a balanced tournament is not possible with n ≥ 6
teams. Suppose that n ≥ 6 and, towards a contradiction, that a balanced
tournament with n teams exists. We look at the first six teams, say teams
A to F. Suppose that A plays against at most two of these teams, say at
most against B and C but not against D, E and F. Since three matches
have to be played among the quadruple A, D, E and F, the teams D, E
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and F all have to play against one another. This is in contradiction with
our previous findings.

We conclude that A has to play against at least three of the teams, for
example B, C and D. This gives three matches in the quadruple A, B, C,
D, so B, C and D do not play any matches between them. Because the
quadruple B, C, D, E also has to play three matches, E has to play against
all of B, C and D. But now we find a contradiction in the quadruple A, B,
C, E: there are already four matches between these teams (A against B, A
against C, B against E, and C against E). Therefore a balanced tournament
with n ≥ 6 does not exist.

To conclude, we will show that a balanced tournent with five teams exists.
To make such a tournament, imagine the teams are standing in a circle.
Two teams play against each other if they are standing next to each other
in the circle. If we look at any quadruple of teams, we see there are exactly
three pairs of teams standing next to each other in the circle. So the four
teams plays three matches between them. We conclude that 5 is the largest
value of n for which a balanced tournament with n teams exists. �

3. We solve this problem in two steps. In part (a), we consider a frog that is
jumping only on the (horizontal) line. The frog is making a jump of size 1
to the left or right, a jump of size 2 to the left or right, a jump of size 3 to
the left or right, et cetera. We figure out for which n the frog can return
to the number 0 after n jumps. This is then used in part (b) to show for
which n a frog jumping both horizontally and vertically, can can return to
the origin (0, 0) after n jumps.

(a) When the frog has finished n jumps, it has made 1 + 2 + 3 + · · ·+ n =
1
2n(n + 1) steps in total. To get back at 0, the frog must make the
same number of steps to the left and the right. Thus, the total number
of steps must be even. This means that 1

2n(n+ 1) is even, and hence
n(n + 1) is a multiple of four. This yields that n or n + 1 must be
a multiple of four, that is, n is of the form n = 4k − 1 or n = 4k.
Potential values for n are 3, 4, 7, 8, 11, 12, . . .. Now we will show that
for each of these values of n the frog can get back at 0 after n jumps.

We will prove this by induction. For n = 3 and n = 4, it is not hard
to find a solution: 1 + 2− 3 = 0 and 1− 2− 3 + 4 = 0. Now suppose
that we can choose pluses and minuses such that ±1± 2± · · · ±m = 0
for a certain integer m. Then we can also find a combination of pluses
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and minuses such that ±1± 2± · · · ± (m+ 4) = 0. Indeed:

±1± 2± · · · ±m+ (m+ 1)− (m+ 2)− (m+ 3) + (m+ 4)

= 0 + (m+ 1)− (m+ 2)− (m+ 3) + (m+ 4)

= 1− 2− 3 + 4

= 0.

It follows that the frog can indeed get back to 0 after n jumps for each
n of the form n = 4k − 1 or n = 4k. �

(b) This problem actually consists of two variants on part (a), namely
in the horizontal and the vertical direction. We start by considering
the vertical direction. The frog is making jumps consisting of even
numbers of steps. This is actually what was happening in part (a),
except that the jumps are twice as long. Hence, the frog can end up on
the x-axis if the last jump in the vertical direction consists of 8k−2 or
8k steps. Now we have to investigate whether the frog can also arrive
back on the y-axis, and hence at the origin (0, 0). The last horizontal
jump is one before or one after the last vertical jump, hence the last
horizontal jump must consist of 8k − 3, 8k − 1, or 8k + 1 steps.

We will investigate whether it is possible that ±1 ± 3 ± · · · ± n = 0
for n of the form 8k − 3, 8k − 1, or 8k + 1. To get back to the y-axis,
the total number of horizontal steps must be even. Because each
jump consists of an odd number of steps, the frog must make an even
number of jumps in the horizontal direction. If the last horizontal
jump is of the form n = 8k−3 or n = 8k+ 1, then the total number of
horizontal jumps is odd. This cannot happen. For the remaining case
n = 8k − 1, we will use induction to prove that this case is possible.

Suppose that the last horizontal jump consists of 8k−1 steps. We show
that we can put pluses and minuses such that ±1±3±· · ·±(8k−1) = 0.
For k = 1, we find 1− 3− 5 + 7 = 0. Suppose that for a certain j ≥ 1,
we have ±1± 3± · · · ± (8j − 1) = 0. Then

± 1± 3± · · · ± (8j − 1) + (8j + 1)− (8j + 3)− (8j + 5) + (8j + 7)

= 0 + 1− 3− 5 + 7

= 0

and we can choose pluses and minuses such that

±1± 3± · · · ± (8(j + 1)− 1) = 0.

Now we have shown that we can put pluses and minuses such that
±1± 3± · · · ± (8k − 1) = 0 for each integer k.
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We conclude that there are two possibilities for the frog to end at
the origin (0, 0). The first is for n = 8k − 1: the second to last jump
consists of 8k − 2 vertical steps, and the last jump consists of 8k − 1
horizontal steps. The second is n = 8k, then the second last jump
consists of 8k − 1 horizontal steps and the last jump consists of 8k
vertical steps. �

4. (a) We first prove the similarity 4CMD ∼ 4ABC. Since BC and
MD are parallel, we find that ∠ADM = ∠ACB = 90◦ and also
∠AMD = ∠ABC. It follows that 4ABC ∼ 4AMD. Because
|AB| = 2|AM | we also have that |AC| = 2|AD| and thus |AD| = |DC|.
This implies the congruence 4AMD ∼= 4CMD: both triangles have
a right angle at D and the two adjacent sides have the same length.
Now we have that 4ABC ∼ 4AMD ∼= 4CMD, and so it holds that
4CMD ∼ 4ABC.

Now we will prove that 4CME ∼ 4ABD. We already know that
∠ECM = ∠DCM = ∠CAB = ∠DAB, and also that

|EC|
|CM |

=
1
2 |DC|
|CM |

=
1
2 |CA|
|AB|

=
|DA|
|AB|

.

This implies that 4CME ∼ 4ABD: the triangles have one equal
angle and the two adjacent sides have the same ratio.

(b) Let F be the intersection of BD en CM . Since BD is perpendicular
to CM we have that ∠BFM = 90◦. So in the triangle 4BFM we
have that ∠BMF +∠FBM = 90◦. Because of the similar triangles in
part (b) we have ∠FBM = ∠ABD = ∠CME = ∠FME. It follows
that ∠BMF + ∠FME = 90◦, hence EM is perpendicular to AB. �

5. Suppose by contradiction that n is not prime. Now consider the greatest
divisor d < n of n. Then we can write n as de. Since n is not prime, we have
d > 1 and hence also e < n. Now e must satisfy e > 1 and e ≤ d (because
d is the greatest divisor satisfying d < n). Now d+ 1 must be a divisor of
n+ 1. Moreover, d+ 1 is a divisor of (d+ 1)e = de+ e = n+ e. This means
that d+ 1 must also be a divisor of the difference n+ e− (n+ 1) = e− 1.
This, however, is impossible, because e− 1 is a number between 1 and d− 1.
Therefore, our assumption that n is not prime must be false, and n must
actually be a prime number. �
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BxMO Team Selection Test, March 2022

Problems

1. Find all functions f : Z>0 → Z>0 for which f(n) | f(m)− n if and only if
n | m for all natural numbers m and n.

2. Let ABC be an acute triangle, and let D be the foot of the altitude from
A. The circle with centre A passing through D intersects the circumcircle
of triangle ABC in X and Y , in such a way that the order of the points on
this circumcircle is: A, X, B, C, Y . Show that ∠BXD = ∠CY D.

3. Find all pairs (p, q) of prime numbers such that

p(p2 − p− 1) = q(2q + 3).

4. Given positive real numbers a1, a2, . . . , an with n ≥ 2 such that a1a2 · · · an =
1, prove that(
a1
a2

)n−1

+

(
a2
a3

)n−1

+ . . .+

(
an−1
an

)n−1

+

(
an
a1

)n−1

≥ a21 +a22 + . . .+a2n

and determine when equality holds.

5. At a fish market there are 10 stalls, each selling the same 10 kinds of fish.
Each fish was caught in either the North Sea or the Mediterranean Sea,
and each stall has, for each kind of fish, only fish of one origin. A number,
say k, of customers buy exactly one fish from each stall, in such a way
that they obtain exactly one of each kind of fish. Moreover, for each pair
of customers, there is a kind of fish of which the customers have fish of
different origin. Consider all possible ways to supply the stalls according
to the rules above.

What is the largest possible value of k?
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Solutions

1. Substituting m = n gives f(n) | f(n) − n, so for all natural numbers n
we have f(n) | n. Applying this to the original condition, it follows that
f(n) | f(m) if and only if n | m.

We show that f(n) = n by induction on the number of prime factors of n.
The base of the induction is the case n = 1. In this case, we have f(1) | 1,
therefore f(1) = 1.

Suppose that f(k) = k for all natural numbers k with fewer prime factors
than n, and suppose for a contradiction that f(n) | n is a strict divisor
of n. Then there exists a prime number p such that f(n) | n

p = f(n
p ), by

the induction hypothesis. But n does not divide n
p , which contracts our

assumption that f(n) 6= n. Therefore f(n) = n, and this concludes the
induction.

Note that f(n) = n is indeed a solution, since n | m holds if and only if
n | m− n. �

A B

C

D

X

Y
S

T

2. As the radius AD is perpendicular to BC, the line BC is tangent to the
circumcircle of 4DXY . By the inscribed angle theorem (tangent case),
we have ∠XDB = ∠XYD. Moreover, the quadrilateral BCYX is cyclic,
so ∠CBX + ∠XY C = 180◦. By the sum of angles in 4BDX, we have
∠BXD = 180◦−∠DBX−∠XDB = (180◦−∠CBX)−∠XDB = ∠XY C−
∠XYD. As ∠XY C − ∠XYD = ∠DY C, we obtain ∠BXD = ∠DY C. �
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3. We show that the only solution is (p, q) = (13, 31).

First suppose that p = q. Then p2 − p − 1 = 2q + 3 = 2p + 3, therefore
(p− 4)(p+ 1) = 0. As neither 4 and −1 are prime numbers, there are no
solutions (p, q) with p = q.

Hence p 6= q, so from the equation, it follows that p | 2q+3 and q | p2−p−1.
As 2q+3 and p2−p−1 are positive, it follows that p ≤ 2q+3 and q ≤ p2−p−1.
To find a better lower bound for p, we multiply these relations:

pq | (2q + 3)(p2 − p− 1)

| 2qp2 − 2qp− 2q + 3(p2 − p− 1)

| 3(p2 − p− 1)− 2q.

Note that 3(p2 − p − 1) − 2q ≥ 3q − 2q = q > 0. Therefore the relation
above yields

pq ≤ 3(p2 − p− 1)− 2q

= 3p2 − 3p− (2q + 3)

≤ 3p2 − 3p− p
= 3p2 − 4p.

Adding 4p to both sides, then dividing both sides by p, we find that
q + 4 ≤ 3p, so

2q + 3

6
<
q + 4

3
≤ p.

As p is a divisor of 2q+3, we deduce that 2q+3 = kp with k ∈ {1, 2, 3, 4, 5}.

• If k = 1, then 2q + 3 = p and therefore also q = p2 − p − 1. This
implies that p = 2q + 3 = 2(p2 − p− 1) + 3 = 2p2 − 2p+ 1. This in
turn implies that (2p− 1)(p− 1) = 0, but this equation does not have
prime solutions.

• Note that k = 2 and k = 4 are not possible either, since then kp would
be even, while 2q + 3 is odd.

• If k = 3, then it follows from 2q+ 3 = 3p that 3 | q, and therefore that
q = 3. Hence p = 2q+3

3 = 3. However, this does not give a solution of
the given equation.

Therefore k = 5. Then we have 5p = 2q + 3, and therefore 5q = p2 − p− 1
as well. Substituting this gives 25p = 5(2q + 3) = 2(p2 − p − 1) + 15 =
2p2 − 2p+ 13, and therefore (p− 13)(2p− 1) = 0. As p is prime, it follows
that p = 13, and that q = 5p−3

2 = 31. Note that (p, q) = (13, 31) is indeed
a solution of the given equation, so it is the only solution of the given
equation. �
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4. We apply the AM-GM inequality on 1
2n(n− 1) terms:

(n−1)
(
a1

a2

)n−1
+ (n−2)

(
a2

a3

)n−1
+ . . .+

(an−1

an

)n−1
1
2n(n− 1)

≥
((a1
a2

)(n−1)2(a2
a3

)(n−1)(n−2)· · · (an−1
an

)n−1) 2
n(n−1)

=

((a1
a2

)n−1(a2
a3

)n−2· · · (an−1
an

)) 2
n

=
(
an−11 a−12 a−13 · · · a−1n

) 2
n

= a21
(
a−11 a−12 a−12 · · · a−1n

) 2
n .

As it is given that a1a2 · · · an = 1, this equals a21. Cyclically permuting the
indices in this equation gives similar inequalities for each a2i . Summing these
inequalities gives the required inequality: the right hand side is obviously
a21 + a22 + . . .+ a2n, and on the left hand side we only have terms of the form(

ai

ai+1

)n−1
, each with a factor 1

1
2n(n−1)

((n− 1) + (n− 2) + . . .+ 1) = 1.

Equality holds if and only if equality holds for each of the n inequalities.
For each of these, equality holds if and only if the n− 1 terms are equal.
For n = 2, therefore equality trivially holds, so equality holds for all a1, a2
with a1a2 = 1. For n > 2, equality holds if all cyclic permutations of
a1

a2
= a2

a3
= . . . = an−1

an
hold. Combining two of these equations, we get

a1

a2
= a2

a3
= . . . = an

a1
= a for some positive real a, and if the latter equation

holds, we see that all cyclic permutations of the former equation also hold.

By taking the product of all the fractions in the latter equation, we get
an = a1

a2

a2

a3
· · · an

a1
= 1, hence that a = 1. All ai must therefore be equal, so

by the given condition, they must all be equal to 1, and indeed, substituting
ai = 1 for all i in the inequality of the problem does give equality. �
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5. The largest possible value of k is 210 − 10. First note that there are 210

possible combinations for the origins per kind of fish. We show that there
are always at least 10 exceptions (combinations that cannot be obtained
by a customer), and that there is a way to supply the stalls for which there
are exactly 10 exceptions.

Let us number both the stalls and the kinds of fish from 1 up to 10. For
stall i, define the sequence ai ∈ {M,N}10 as the sequence of origins of
the 10 kinds of fish in this stall. Let ci be the complement of ai, i.e. the
sequence obtained from ai by replacing all M ’s with N ’s and vice versa.
As every customer has bought a fish from stall i, no customer can have ci
as his sequence of fish origins. If all ci (for 1 ≤ i ≤ 10) are distinct, then
we have 10 exceptions.

Otherwise, two of the stalls, say i and j, sell each kind of fish from the same
origin, i.e. ai = aj , and therefore also ci = cj . Define the sequences dk with
1 ≤ k ≤ 10 by changing in ci the origin of kind k of fish. These are the
sequences which have exactly one origin in common with ai. If a customer
would have had sequence dk, then this customer therefore could only have
bought a fish from one of stalls i or j, but not both, contradicting the given
that every customer bought exactly one fish from every stall. Therefore
also in this case, there are at least 10 exceptions.

We now construct a market in which it is possible to buy 210 − 10 possible
combinations of fish origins as in the problem. Suppose that stall i sells
fish from the North Sea, unless the fish is of kind i (in which case the fish
is from the Mediterranean Sea). Let b ∈ {M,N}10 a sequence of origins in
which the number of N ’s is not exactly 1. We show that we can buy 10 fish
from 10 stalls in such a way that b is the sequence of origins. Let A be the
set of indices i for which bi = M , and B be the set of indices i for which
bi = N . For i ∈ A, buy a fish of kind i from stall i, so that we get a fish
from the Mediterranean Sea. If B is empty, then we are done. If not, then
B has at least two elements. Write B = {i1, . . . , in} ⊂ {1, . . . , 10}. For
ik ∈ B, buy fish of kind ik from stall ik+1, considering the indices modulo
n. Since n ≥ 1, we have ik+1 6= ik, so this fish is from the North Sea, as
required. �
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IMO Team Selection Test 1, June 2022

Problems

1. Determine all positive integers n ≥ 2 which have a positive divisor m | n
satisfying

n = d3 +m3,

where d is the smallest divisor of n which is greater than 1.

2. Two circles Γ1 and Γ2 are given with centres O1 and O2 and common
exterior tangents `1 and `2. The line `1 intersects Γ1 in A and Γ2 in B.
Let X be a point on segment O1O2, not lying on Γ1 or Γ2. The segment
AX intersects Γ1 in Y 6= A and the segment BX intersects Γ2 in Z 6= B.
Prove that the line through Y tangent to Γ1 and the line through Z tangent
to Γ2 intersect each other on `2.

3. For real numbers x and y we define M(x, y) to be the maximum of the
three numbers xy, (x− 1)(y − 1), and x+ y − 2xy. Determine the smallest
possible value ofM(x, y) where x and y range over all real numbers satisfying
0 ≤ x, y ≤ 1.

4. In a sequence a1, a2, . . . , a1000 consisting of 1000 distinct numbers a pair
(ai, aj) with i < j is called ascending if ai < aj and descending if ai > aj .
Determine the largest positive integer k with the property that every
sequence of 1000 distinct numbers has at least k non-overlapping ascending
pairs or at least k non-overlapping descending pairs.
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Solutions

1. The smallest divisor of n greater than 1 is the smallest prime divisor of
n, hence d is prime. Moreover, we have d | n, hence d | d3 + m3, and
d | m3. This yields that m > 1. On the other hand we have m | n, hence
m | d3 +m3, and m | d3. Because d is prime and m > 1, we also see that
m equals d, d2, or d3.

In all cases the parity of m3 is equal to that of d3, and n = d3 + m3 is
even. This means that the smallest divisor of n greater than 1 equals 2, i.e.
d = 2. In case m = d, we find n = 23 + 23 = 16, in case m = d2, we find
n = 23 + 26 = 72, and in case m = d3, we find n = 23 + 29 = 520. These
are indeed solutions: they are even so that d = 2, and 2 | 16; 4 | 72 and
8 | 520, which indeed gives m | n. �

`1

`2

O1 O2

A

B

X

Z1

Y
Z

2. We consider the configuration in which Y lies between A and X; the other
configurations are treated analogously. Let C be the intersection of `2 and
Γ1. Then C is the reflection of A in O1O2. We get

∠O1Y X = 180◦ − ∠O1Y A (straight angle)

= 180◦ − ∠Y AO1 (O1Y A is isosceles)

= 180◦ − ∠XAO1

= 180◦ − ∠XCO1 (A is the reflection of C in O1X)
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which yields that O1CXY is cyclic.

Now let S be the intersection of the line through Y tangent to Γ1, and
the line `2. Then both SC and SY are tangent to Γ1, hence we have
∠SCO1 = 90◦ = ∠SY O1, and O1CSY is cyclic.

We see that both X and S lie on the circle through O1, C, and Y . Therefore,
we have ∠SXO1 = ∠SY O1 = 90◦. We conclude that SX is perpendicular
to O1O2. Analogously, for the intersection S′ of the line through Z tangent
to Γ2, and the line `2, we can deduce that S′X is perpendicular to O1O2.
Because S and S′ both lie on `2, we have S = S′. Hence the two tangents
intersect each other on `2. �

3. We will show that the minimum value is 4
9 . This value can be attained

by taking x = y = 2
3 . Then we have xy = 4

9 , (x − 1)(y − 1) = 1
9 , and

x+ y − 2xy = 4
9 , and the maximum is indeed 4

9 .

Now we will prove that M(x, y) ≥ 4
9 for all x and y. Let a = xy, b =

(x − 1)(y − 1), and c = x + y − 2xy. If we replace x and y by 1 − x and
1 − y, then a and b will be interchanged and c stays the same, because
(1−x)+(1−y)−2(1−x)(1−y) = 2−x−y−2+2x+2y−2xy = x+y−2xy.
Hence, M(1− x, 1− y) = M(x, y). We have x+ y = 2− (1− x)− (1− y),
so at least one of x+ y and (1− x) + (1− y) is greater than or equal to 1,
which means that we may assume without loss of generality that x+ y ≥ 1.

Now write x+ y = 1 + t with t ≥ 0. We also have t ≤ 1, because x, y ≤ 1
and hence x+ y ≤ 2. The inequality between the arithmetic and geometric
mean yields

xy ≤
(
x+ y

2

)2

=
(1 + t)2

4
=
t2 + 2t+ 1

4
.

We have b = xy − x − y + 1 = xy − (1 + t) + 1 = xy − t = a − t, hence
b ≤ a. Moreover,

c = x+ y− 2xy ≥ (1 + t)− 2 · t
2 + 2t+ 1

4
=

2 + 2t

2
− t

2 + 2t+ 1

2
=

1− t2

2
.

If t ≤ 1
3 , then we have c ≥ 1−t2

2 ≥ 1− 1
9

2 = 4
9 and hence M(x, y) ≥ 4

9 as well.

The remaining case is t > 1
3 . We have c = x+y−2xy = 1+ t−2a > 4

3 −2a.
Moreover, M(x, y) ≥ max(a, 43 − 2a), hence

3M(x, y) ≥ a+ a+ ( 4
3 − 2a) = 4

3 ,

which yields that M(x, y) ≥ 4
9 .

We conclude that the minimum value of M(x, y) is 4
9 . �
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4. We will prove that the greatest k is 333. First consider the sequence
1000, 999, 998, . . . , 669, 668, 1, 2, 3, . . . , 666, 667. The first 333 numbers in
the sequence are not usable in an ascending pair, because for each of these
numbers the numbers left of it are all greater and the numbers right of it
are all smaller. Therefore, for the ascending pairs only the last 667 numbers
are available and that gives at most 333 non-overlapping ascending pairs.
For a descending pair (ai, aj) with i < j we get that ai cannot be one of the
numbers 1 through 667, because for each of these numbers there are only
greater numbers right of it. Hence, ai must be one of the first 333 numbers,
from which we deduce that there can be at most 333 non-overlapping
descending pairs. We conclude that no k > 333 will satisfy the conditions.

Now we will prove that for all t ≥ 1, there are at least t non-overlapping
ascending or t non-overlapping descending pairs in any sequence of 3t− 1
distinct numbers. We will prove this by induction on t. For t = 1, the
sequence has length 2 and this pair of numbers is either descending or
ascending, which means the statement is correct. Now let r ≥ 1 and
suppose the statement is true for t = r. We consider the case t = r + 1
and take any sequence a1, a2, . . . , a3r+2 of 3r + 2 distinct numbers. If the
sequence is completely ascending, we can make neighbouring pairs which
are all ascending. These are b 3r+2

2 c ≥
2r+2

2 = r + 1 pairs. Analogously,
if the sequence is fully descending, there are at least r + 1 descending
pairs. If the sequence is not fully ascending and also not fully descending,
there is a spot in the sequence where the sequence is first ascending and
then descending or the other way around. In other words: there are
numbers ai, ai+1, ai+2 in the sequence with ai < ai+1 > ai+2 or ai >
ai+1 < ai+2. In both cases, these three numbers contain both an ascending
and descending pair. Now apply the induction hypothesis to the sequence
a1, a2, . . . , ai−1, ai+3, ai+4, . . . , a3r+2. This is a sequence with 3r + 2− 3 =
3r − 1 distinct numbers, so there are at least r non-overlapping ascending
pairs or r non-overlapping descending pairs. In the former case, we can add
the ascending pair from ai, ai+1, ai+2 to it, and in the latter case, we can
add the descending pair to it. In this way, we obtain r + 1 non-overlapping
ascending pairs or r + 1 non-overlapping descending pairs. This completes
the induction.

Now substitute t = 333 in this result: in a sequence consisting of 998
distinct numbers, there are always at least 333 non-overlapping ascending
pairs or at least 333 non-overlapping descending pairs. This is also true for
a sequence consisting of 1000 numbers (just ignore the last two numbers).
Hence, k = 333 satisfies the conditions and is the greatest such k. �
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IMO Team Selection Test 2, June 2022

Problems

1. Consider an acute triangle ABC with |AB| > |CA| > |BC|. The vertices
D, E, and F are the base points of the altitudes from A, B, and C,
respectively. The line through F parallel to DE intersects BC in M .
The angular bisector of ∠MFE intersects DE in N . Prove that F is the
circumcentre of 4DMN if and only if B is the circumcentre of 4FMN .

2. Let n be a positive integer. For a real x ≥ 1, assume that bxn+1c, bxn+2c,
. . . , bx4nc are all squares of positive integers. Prove that bxc is also the
square of a positive integer.
Here bzc is the greatest integer smaller than or equal to z.

3. There are 15 lights on the ceiling of a room, numbered from 1 to 15. All
lights are turned off. In another room, there are 15 switches: a switch for
lights 1 and 2, a switch for lights 2 and 3, a switch for lights 3 en 4, et
cetera, including a sqitch for lights 15 and 1. When the switch for such a
pair of lights is turned, both of the lights change their state (from on to
off, or vice versa). The switches are put in a random order and all look
identical. Raymond wants to find out which switch belongs which pair
of lights. From the room with the switches, he cannot see the lights. He
can, however, flip a number of switches, and then go to the other room to
see which lights are turned on. He can do this multiple times. What is
the minimum number of visits to the other room that he has to take to
determine for each switch with certainty which pair of lights it corresponds
to?

4. Determine all positive integers d for which there exists a k ≥ 3 such that
you can put the numbers d, 2d, 3d, . . . , kd in a sequence in such a way that
that the sum of every pair of neighbouring numbers is a square.
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Solutions

A B

C

D

E

F

M

N

1. Because of the requirement on the length, the configuration is fixed: M lies
on the ray CB past B, and N lies on the ray ED past D. See the figure.
Let α = ∠BAC and β = ∠ABC. Moreover, let H be the orthocentre
of the triangle (in other words: the intersection of AD, BE, and CF ).
Thales’s theorem yields that AFHE, BDHF , CEHD, ABDE, BCEF ,
and CAFD are cyclic. Because of the cyclic quadrilateral ABDE, we
get ∠CED = 180◦ − ∠AED = ∠ABD = β and because of the cyclic
quadrilateral BCEF , we get ∠AEF = 180◦ − ∠CEF = ∠CBF = β.
Analogously, ∠CDE and ∠BDF equal α.

From ∠CED = β = ∠AEF it follows that ∠DEH = 90◦ − β = ∠FEH.
Hence, EH is the angular bisector of ∠DEF . Because DE ‖ FM , we
get that ∠MFE = 180◦ − ∠FED = 180◦ − 2(90◦ − β) = 2β. As FN is
the angular bisector of ∠MFE, we have ∠EFN = 1

2 · 2β = β. Because
∠FEH = 90◦ − β, we also see that FN and EH are perpendicular, hence
EH is not only the angular bisector in 4FEN , but it is also an altitude.
Therefore, this line is also the perpendicular bisector of FN . As B lies on
this line, we get |BF | = |BN |.
We already saw that ∠CDE = α = ∠BDF . Because DE ‖ FM , we
also have ∠BMF = ∠CDE = α, hence ∠DMF = ∠BMF = ∠BDF =
∠MDF . Thus, |FM | = |FD|.
Let S be the intersection of AC with MF . Then we have ∠BFM = ∠AFS
and because DE ‖ FM , we get ∠CED = ∠CSF . The exterior angle
theorem in triangle AFS yields that ∠CSF = ∠SAF+∠AFS = α+∠AFS.
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Combining everything, we obtain ∠CED = α + ∠BFM . On the other
hand, we knew that ∠CED = β, hence ∠BFM = β − α. Moreover, we
know that ∠BMF = α. We conclude that |BF | = |BM | if and only if
β − α = α, or if and only if β = 2α. Because we already know that
|BF | = |BN |, we get: B is the circumcentre of 4FMN if and only if
β = 2α.

Before, we saw that EH is the perpendicular bisector and altitude in
triangle EFN , hence this triangle is isosceles with top angle E, which
yields that ∠DNF = ∠ENF = ∠EFN = β. Moreover, we know that
∠CDE = α = ∠BDF , from which it follows that ∠NDF = ∠NDB +
∠BDF = ∠CDE + ∠BDF = 2α. Hence, |FD| = |FN | if and only if
β = 2α. Because we already knew that |FM | = |FD|, we now get: F is
the circumcentre of 4DMN if and only if β = 2α.

We conclude that F is the circumcentre of 4DMN if and only if B is the
circumcentre of 4FMN , as both properties are equivalent to β = 2α. �

2. We first prove the statement for n = 1. Write x = a+r, with a ≥ 1 an integer
and 0 ≤ r < 1. Suppose bx2c, bx3c and bx4c are squares. Then we have
a ≤ x < a+ 1, from which it follows that a2 ≤ x2 < (a+ 1)2. Hence, x2 is
squeezed between two consecutive squares. However, bx2c is a square, hence
the only possibility is that bx2c = a2. We conclude that a2 ≤ x2 < a2 + 1.
Completely analogously, we also get that (a2)2 ≤ x4 < (a2 + 1)2 and hence
bx4c = a4. We conclude that a4 ≤ x4 < a4 + 1.

Moreover, we have that x3 ≥ a3. Now suppose that x3 ≥ a3 + 1, i.e.

x4 ≥ x(a3 + 1) = (a+ r)(a3 + 1) = a4 + ra3 + a+ r ≥ a4 + a ≥ a4 + 1,

which gives a contradiction. Hence, x3 < a3+1, which yields that bx3c = a3.
This is also a square, hence a must be a square itself. We see that bxc is a
square.

Now we will finish the proof with induction to n. The induction basis has
just been proved. Now let k ≥ 1 and suppose that the statement is proved
for n = k. Consider a real number x ≥ 1 with the property that bxk+2c,
bxk+3c, . . . , bx4k+4c are all squares. In particular, bx2(k+1)c, bx3(k+1)c,
and bx4(k+1)c are all squares. We can now apply the case n = 1 on xk+1

(which is a real number greater than or equal to 1) and find that bxk+1c is
also a square. Now we know that bxk+1c, bxk+2c, . . . , bx4kc are all squares
and using the induction hypothesis, we obtain that bxc is a square as well.
This completes the proof by induction. �
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3. Walking back and forth just three times, Raymond cannot know all the
switches with certainty. Indeed, if you note for each switch whether it is
in the original or the switched state, there are 23 = 8 different switching
patterns. There are 15 switches, however, therefore there must be multiple
switches with the same switching pattern and Raymond can never distin-
guish these switches from each other. Therefore, he has to go to the other
room at least four times. We will prove that he can always do it in four
times.

Starting from the situation in which all lights are turned off, suppose that
Raymond changes some of the switches. If he changed none or all of the
switches, then all lights are off. Otherwise, there is always a light which
has been switched by exactly one switch, so this light is now on. Consider
such a light i that is now turned on. Then the switch corresponding to i− 1
and i or the one corresponding to i and i+ 1 has been flipped. (Consider
the numbers of the lights modulo 15.) First suppose that it was the latter
switch. Then consider light i + 1. If this light is off, then the switch
corresponding to i + 1 and i + 2 has also been flipped; if the light is on,
then this switch has not been flipped. Next, we can use the state of light
i + 2 to deduce whether the switch corresponding to i + 2 and i + 3 has
been flipped or not. Continuing this way, we can determine for each switch
whether or not it has been flipped. In the second case, when the switch
corresponding to i−1 and i has been flipped, it is also determined for every
other siwtch whether or not it has been flipped. Hence, there are exactly
two combinations of switches that give the same state for the lights. If we
choose one of these combinations and then flip all 15 switches, exactly the
same lights are turned on, hence this must be the second combination of
switches. If the first combination of switches contains an even number of
switched, the second combination contains 15 minus that number, an odd
number.

Of course, Raymond knows how many switches he flipped. So using the
state of the lights, he can deduce which of the two switch combinations is
compatible with the total number of switches he flipped. Therefore, he can
deduce exactly which switches have been flipped, but he does not know
which switch is which in this combination of flipped switches.

Now write the numbers 1 to 15 in binary. Only 4 digits are needed for this;
supplement the numbers by leading zeros so that each number has exactly
4 digits. Raymond numbers the switches with these binary numbers. Then
in the first round, he flips the switches for which the first binary digit is a 1
and he writes down the 8 corresponding pairs of lights. In the second round,
he first flips all switches back and flips the switches whose second binary
digit is a 1. In the same way, for the third round he looks at the third
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binary digit, and in the fourth round at the fourth binary digit. In each
round, he can figure out the pairs of lights for which the switch has been
flipped (but not which switch is which). Because each switch corresponds
to a unique subset of rounds, he can now find out for each switch which pair
of lights corresponds to it. For example, if for some pair of lights the switch
has been flipped in the first round, third round, fourth round, but not in
the second round, then this corresponds to the switch with the binary code
1011, so with switch 11. Therefore, he can finish his task walking just four
times to the other room. �

4. For d = 1, we take k = 15 and the sequence

8, 1, 15, 10, 6, 3, 13, 12, 4, 5, 11, 14, 2, 7, 9.

Two neighbouring numbers in this sequence always add up to 9, 16, or 25.
For square d > 1, we also take k = 15 and the same sequence as above,
except that we multiply all numbers by d. Two neighbouring numbers in
this sequence always add up to 9d, 16d, or 25d, which are all squares.

Now consider a non-square d. We will show that this will not satisfy the con-
ditions. Suppose that there does exists a k and a sequence a1d, a2d, . . . , akd,
such that {a1, a2, . . . , ak} = {1, 2, . . . , k}. Write d = cm2, where m is a
positive integer such that c is not divisible by a square greater than 1.
Then for all i with 1 ≤ i ≤ k − 1, we have that aid + ai+1d is a square
and d = cm2 | aid + ai+1d, hence cd = c2m2 | aid + ai+1d, which yields
that c | ai + ai+1. From this, we obtain that ai+1 ≡ −ai mod c and
hence ai+2 ≡ −ai+1 ≡ ai mod c. Therefore, there are at most two distinct
residue classes modulo c occurring among the ai, namely the classes of a1
and a2. However, {a1, a2, . . . , ak} = {1, 2, . . . , k} and k ≥ 3, and therefore
we must have c ≤ 2. Because d is not a square, c = 1 is impossible,
hence c = 2. But then we have ai+1 ≡ −ai ≡ ai mod 2, so there is at
most one residue class modulo 2 occurring in the sequence, which gives a
contradiction.

We conclude that the d that satisfy the conditions are the squares. �
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IMO Team Selection Test 3, June 2022

Problems

1. Find all quadruples (a, b, c, d) of non-negative integers such that ab =
2(1 + cd) and there exists a non-degenerate triangle with sides of length
a− c, b− d, and c+ d.

2. Let n > 1 be an integer. There are n boxes in a row, and there are n+ 1
identical stones. A distribution is a way to distribute the stones over the
boxes, in which every stone is in exactly one of the boxes. We say that
two of such distributions are a stone’s throw away from each other if we
can obtain one distribution from the other by moving exactly one stone
from one box to another. The cosiness of a distribution a is defined as the
number of distributions that are a stone’s throw away from a. Determine
the average cosiness of all possible distributions.

3. Find all natural numbers n for which there exists an integer a > 2 such
that ad + 2d | an − 2n for all positive divisors d 6= n of n.

4. Let 4ABC be a triangle such that C is a right angle and |AC| > |BC|, let
I be the centre of its incircle, and let H be the projection of C on the line
segment AB. The incircle ω of 4ABC is tangent to the sides BC, CA,
and AB in the points A1, B1, and C1, respectively. Let E and F be the
reflections of C in the lines A1C1 and B1C1, respectively, and let K and
L be the reflections of H in the lines A1C1 and B1C1, respectively. Prove
that the circumcircles of A1EI, B1FI, and C1KL are concurrent.
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Solutions

1. Note that a > c and b > d, as a− c and b− d are sides of a non-degenerate
triangle. So a ≥ c + 1 and b ≥ d + 1, as they are integers. Consider two
cases: a > 2c and a ≤ 2c.

Suppose that a > 2c. Then ab > 2bc ≥ 2c · (d + 1) = 2cd + 2c. We also
have ab = 2 + 2cd, so 2c < 2, and therefore c = 0. We deduce that ab = 2
and that there exists a non-degenerate triangle with sides a, b− d, and d.
Therefore d ≥ 1 and b > d, so b ≥ 2. From ab = 2 it follows that a = 1 and
b = 2, and therefore also d = 1. Note that there exists a non-degenerate
triangle with sides 1, 1, and 1, so the quadruple (1, 2, 0, 1) is a solution.

Now suppose that a ≤ 2c. By the triangle inequality, we have (a − c) +
(b− d) > c+ d, so a+ b > 2(c+ d). As a ≤ 2c, it follows that b > 2d. As
a ≥ c+ 1, we have ab > (c+ 1) · 2d = 2cd+ 2d. On the other hand, we have
ab = 2 + 2cd, so 2d < 2, and therefore d = 0. Analogously to the previous
case, we deduce that the only other solution is (2, 1, 1, 0).

Therefore the only solutions are the quadruples (1, 2, 0, 1) and (2, 1, 1, 0). �

2. We call two distributions neighbours if they are a stone’s throw away from
each other.

We count the number Nk of distributions containing exactly k empty boxes,
where 0 ≤ k ≤ n−1 (since not all boxes can be empty). There are

(
n
k

)
ways

to choose the empty boxes and
(
(k+1)+(n−k)−1

k+1

)
=
(

n
k+1

)
ways to fill the

remaining n−k boxes with n+1 = (n−k)+(k+1) stones such that each of
these boxes contains at least one stone (number of multisubsets of size k+ 1
from a set of n− k boxes), yielding a total of Nk =

(
n
k

)
·
(

n
k+1

)
distributions

containing exactly k empty boxes. Given such a distribution, we can move
a stone from any of the n− k non-empty boxes to any of the other n− 1
boxes, giving rise to (n− k)(n− 1) distinct neighbouring distributions. So,
the cosiness of each of these Nk distributions is (n− k)(n− 1).

For k′ = (n−1)−k, the number of distributions containing exactly k′ empty
boxes equals Nk′ =

(
n
k′

)
·
(

n
k′+1

)
=
(

n
n−1−k

)
·
(

n
n−k
)

=
(

n
k+1

)
·
(
n
k

)
, so Nk′ = Nk.

The cosiness of each of theseNk distributions is (n−k′)(n−1) = (k+1)(n−1).
This means that the average cosiness for these two (possibly coinciding)

sets of distributions is (n−k)+(k+1)
2 (n− 1) = n+1

2 (n− 1). Being constant in
k, this is also the overall average. �
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3. We show that n satisfies the given condition if and only if n is prime or n
is a power of 2 (including n = 1).

If n is an odd prime, then the only proper divisor d of n is d = 1. Let
a = 2k − 2 with 3 ≤ k ≤ n + 1, e.g. a = 6. Then we need to check that
2k − a+ 2 = 2k is a divisor of (2k − 2)n − 2n. As this is the difference of
two terms which contain exactly n factors 2, the difference contains n+ 1
factors 2.

If n is a power of 2, say n = 2m with m ≥ 0. If m = 0, then there are
no proper divisors of n, so n satisfies the given condition because it is an
empty condition. If m ≥ 1, then for all proper divisors d of n, the integer
e = n

d is even. Note that

an − 2n = ade − 2de ≡ (−2d)e − 2de = 2n((−1)e − 1) mod ad + 2d

is zero for all a. Hence an − 2n is a multiple of ad + 2d, and therefore
ad + 2d | an − 2n. So if n is prime or a power of 2, n does indeed satisfy
the given condition.

Finally, suppose that n is neither a prime number, nor a power of 2. Then
we can write n = de with e 6= 1 odd (since n is not a power of 2) and d 6= 1
(since n is not a prime number). As (−1)e − 1 = −2, it follows from the
computation above that ad + 2d | 2n+1. Hence ad + 2d is a power of 2, so
ad = 2k − 2d for some d < k ≤ n + 1. Therefore a is divisible by 2 and
(a
2 )d = 2k−d − 1.

Now we distinguish between the cases in which d is even and in which d is
odd. In the first case 2k−d − 1 is a square. As a > 2, from (a2 )d = 2k−d − 1
it however follows that k− d ≥ 2, so this square is −1 modulo 4, which is a
contradiction. If d is odd, then we note that

2k−d = (a
2 )d + 1 = (a

2 + 1)((a
2 )d−1 − (a

2 )d−2 + · · ·+ 1).

As d 6= 1, we have a
2 + 1 < (a

2 )d + 1. The second factor in the product
above is a sum of an even number of terms with the same parity as a

2 and
a term 1, so this factor is odd. As this second factor is also greater than 1,
this contradicts it being a factor of a power of 2. �
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A1

B1
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A B
C1H

E

K

F

L

X

4. Note that the segments BC1 and BA1 have equal lengths because they both
are tangents to ω through B. Therefore 4A1BC1 is an isosceles triangle
with apex B, so the angular bisector of ∠ABC is the altitude from B onto
A1C1 and therefore perpendicular to A1C1.

We show that A1E ‖ AB. As E is the reflection of C in A1C1, we have
∠EA1C1 = ∠CA1C1. As 4A1BC1 is isosceles with apex B, we have
∠CA1C1 = ∠AC1A1. So as ∠EA1C1 and ∠AC1A1 are alternate internal
angles, we deduce that A1E ‖ AB.

In the same way, we see that C1K ‖ BC, as ∠KC1A1 = ∠HC1A1 =
∠BC1A1 = ∠BA1C1. Moreover, we have |A1E| = |A1C| = r where r is
the radius of the incircle ω, as C is a right angle.

We now show that EK ⊥ BC. Indeed, if S is the intersection of EK
and BC, we see that ∠A1ES = ∠BCH as EK is the reflection of CH in
A1C1. Moreover, ∠EA1S = ∠CBH as A1E and BC are parallel (alternate
internal angles). We deduce that 4A1ES and 4BCH are similar, and
that the angles ∠ESA1 and ∠CHB are right angles. As therefore EK and
AC are both perpendicular on BC, it also follows that EK ‖ AC.

In the same way, we find B1F ‖ AB, C1L ‖ AC, FL ‖ BC, and |B1F | = r.

Let X be the intersection of the lines EK and FL. We show that this is
the point that lies on the circumcircles of A1EI, B1FI, and C1KL.

First note that C1KXL is a rectangle, and therefore a cyclic quadrilateral.

Now note that |A1E| = |B1F | = r. We show that |XI| = r. Let Y and Z
be the intersections of the line through I parallel to AB and the lines EK
and FL, respectively. Then A1EY I and B1FZI are parallellograms, so
|Y I| = r = |ZI|. Moreover ∠Y XZ = 90◦, so by Thales’s theorem we also
have |XI| = r. In particular, X lies on the incircle ω.

Now note that A1EXI and B1FXI are isosceles trapezoids, and therefore
cyclic quadrilaterals. �

35



Junior Mathematical Olympiad, September 2019

Problems

Part 1

1. A regular hexagon is filled with small circles of the
same size, as illustrated in the figure. The circles can
be tangent, but they do not overlap. Exactly four
circles fit next to each other along the side of the
hexagon.
What is the maximum number of circles that fit in
the hexagon in this way?

A) 30 B) 37 C) 39 D) 41 E) 44

2.

A B

C
1 3
2The dice in the figure on the right has a

6 on the back (opposite the 1), a 5 on the
bottom (opposite the 2), and a 4 on the
left side (opposite the 3). The dice is tilted
along the side of a 4× 4 grid, on the little
squares, until it lies on the little square at
point B. This can be done along the side of the grid via A, or along the
side of the grid via C.
How can the dice be positioned once it has arrived at B?

A)
3

5
6

B)
3

2
1

C)
4

5
1

D)
2

6
4

E)
4

5
6

3. Ahmed, Babeth, Casper, Daan, Emine, and Freek are sitting in a row, in
this order. Ahmed and Babeth both write a positive integer on a piece
of paper. Then Casper adds the numbers on the papers of Ahmed and
Babeth and writes the result on his piece of paper. Afterwards, Daan adds
the numbers on the papers of Babeth and Casper and writes the result on
his piece of paper. Then Emine adds the numbers on the papers of Casper
and Daan and writes the result on her piece of paper. Finally, Freek adds
the numbers on the papers of Daan and Emine and writes the result on his
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piece of paper.
Suppose that Emine wrote the number 19 on her paper, which number do
you get if you add up the numbers on all papers?

A) 57 B) 76 C) 81 D) 89 E) 96

4. Farida makes a list of the integers between 1 and 10.000 that are divisible
by 7. For every number on the list she adds the digits of the number.
What is the smallest number that occurs as an outcome?

A) 1 B) 2 C) 3 D) 4 E) 5

5.

A

B

An ant walks over the lines in the figure on the right
and takes a shortest route from A to B.
How many routes are possible for the ant?

A) 7 B) 12 C) 18 D) 20 E) 30

6.

1 2

345

1

2 3 4 5

1

2

34512

3

4

5

1 2 3 4 5 1

2

3

4

5

1. . .. . .. . .. . .. . .

x

y

In a grid the grid points are visited in a spiral,
in counter clockwise direction. On every grid
point a number from the list 1, 2, 3, 4, 5 is writ-
ten by starting with 1 at the point (0, 0) and
repeating the list indefinitely, like in the figure.
The circled 1 is at the point (0, 0) and the
circled 5 is at the grid point (−2,−1).
Which number is written at the grid point
(−20, 21)?

A) 1 B) 2 C) 3 D) 4 E) 5

7. A watchmaker installed the big and small hand of a clock in the wrong way.
This makes the small hand go with the speed of the big hand and the big
hand with the speed of the small hand. It is known that every day at 8:00
the clock shows the right time.
How many times a day (24 hours) does the clock show the right time?

A) 1 B) 2 C) 6 D) 22 E) 24
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8.

A B

C

D

Given is the triangle ABC. A line from point A
intersects the side BC in D. Parallel to BC we
draw four lines such that they divide AB and AC
in five equal parts. From the ten pieces in which
the triangle ABC is divided, the two dotted ones
have the same area. Also, the area of the grey
triangle at the bottom left next to A is 5.
What is the area of the grey quadrilateral at the
upper right next to C?

A) 50 B) 81 C) 100 D) 119 E) 121

Part 2

1. In the rectangular cross on the right all sides have the
same length. The vertices and midpoints of the sides
are marked with dots. A straight line segment is called
a halving segment if it passes through two of these dots,
and it divides the cross into two parts of equal area.
How many halving segments does the cross have?

2. An artist has an extraordinary working rhythm. He works for 3 hours very
intensively on his art, and then he sleeps for 8 hours before starting to work
again. Suppose that he starts working at midnight in the night from 31
July to 1 August.
Which day of August is the first day after 1 August on which the artist is
working the same number of hours as on 1 August?

3. On a school there are between 500 and 1000 students. The gymnastics
teacher wants to divide the students into teams of eight persons each for a
sports day. Three students are left over. If the teacher tries to divide the
students into teams of nine students, again three students will be left over.
Also with teams of ten students each, three students will be left over.
How many students attend the school?

4. Liselotte has a collection of 100 candies, which are either sweet or bitter.
She wants to choose between the following possibilities.

I) She eats half of the sweet candies. The rest is kept in the bag.
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II) She eats half of the bitter candies. The rest is kept in the bag.

The part of the remaining candies in case I that are bitter, is three times
as large as the part of remaining candies in case II that are bitter.
How many bitter candies does the bag contain (before Liselotte eats any of
them)?

5. A square with area 4 is divided into two grey and two transparent squares,
each having an area of size 1; see the left figure. Another such square is
put on top of this square. The side of the second square is lying exactly on
the middle of the diagonal of the first square; see the right figure.

What is the area of the grey part in the right figure? Give your answer as
a reduced fraction.

6. In a cafe, each product costs at most 12 ducats. Currently the cafe owner is
only using coins worth one ducat. This is unpractical for the more expensive
products, however. Therefore, the cafe owner has decided to introduce two
types of coins next to the coins of one ducat. He is doing this in such a
way that as many values from 1 to 12 ducats can be paid with at most two
coins (without change).
What is the worth of the two new types of coins?

7. A four digit number aabb, that is, the number whose digits are a, a, b, and
b, is the square of an integer.
Of which integer is aabb the square?

8. We compute the product of two numbers,

99 . . . 99×99 . . . 99,

where the first number consists of 20 nines, and the second of 21 nines.
Which number do you get if you add up the digits of the outcome of this
multiplication?
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Answers

Part 1

1. B) 37 5. D) 20

2. C)
4

5
1

6. D) 4

3. B) 76 7. D) 22

4. B) 2 8. B) 81

Part 2

1. 12 5. 3 1
2

2. 7 August 6. 4 and 6

3. 723 7. 88

4. 20 8. 189
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