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Introduction

The selection process for IMO 2020 started with the first round in January
2019, held at the participating schools. The paper consisted of eight multiple
choice questions and four open questions, to be solved within 2 hours. In
this first round 8164 students from 330 secondary schools participated.

The 940 best students were invited to the second round, which was held in
March at twelve universities in the country. This round contained five open
questions, and two problems for which the students had to give extensive
solutions and proofs. The contest lasted 2.5 hours.

The 118 best students were invited to the final round. Also some outstanding
participants in the Kangaroo math contest or the Pythagoras Olympiad
were invited. In total about 150 students were invited. They also received
an invitation to some training sessions at the universities, in order to prepare
them for their participation in the final round.

The final round in September contained five problems for which the students
had to give extensive solutions and proofs. They were allowed 3 hours for
this round. After the prizes had been awarded in the beginning of November,
the Dutch Mathematical Olympiad concluded its 58th edition 2019.

The 30 most outstanding candidates of the Dutch Mathematical Olympiad
2019 were invited to an intensive seven-month training programme. The
students met twice for a three-day training camp, three times for a single
day, and finally for a six-day training camp in the beginning of June. Also,
they worked on weekly problem sets under supervision of a personal trainer.

In February a team of four girls was chosen from the training group to
represent the Netherlands at the EGMO, which was supposed to be held in
the Netherlands. Being the host country, a second team of another four girls
was allowed to participate. Unfortunately, due to the Covid-19 pandemic
the EGMO could not take place in Egmond aan Zee. Instead, a virtual
event was held, where the Dutch team managed to win three bronze medals.
For more information about the EGMO (including the 2020 paper), see
www.egmo.org.

In March a selection test of three and a half hours was held to determine the
ten students participating in the Benelux Mathematical Olympiad (BxMO).
This contest was turned into a virtual event as well, held on 2 May. The
Dutch team achieved an outstanding result: one gold medal, three silver
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medals and five bronze medals. For more information about the BxMO
(including the 2020 paper), see www.bxmo.org.

In June the team for the International Mathematical Olympiad 2020 was
selected by three team selection tests on 10, 11 and 12 June, each lasting
four hours. Since the IMO had been postponed to September, we decided to
participate in the new virtual event Cyberspace Mathematical Competition
(CMC) in July with the same six students. Three young, promising students
were selected to accompany the team to the IMO/CMC training camp,
which was held from 4 until 11 July in Egmond aan Zee.

For younger students the Junior Mathematical Olympiad was held in Oc-
tober 2019 at the VU University Amsterdam. The students invited to
participate in this event were the 100 best students of grade 2 and grade 3
of the popular Kangaroo math contest. The competition consisted of two
one-hour parts, one with eight multiple choice questions and one with eight
open questions. The goal of this Junior Mathematical Olympiad is to scout
talent and to stimulate them to participate in the first round of the Dutch
Mathematical Olympiad.

We are grateful to Jinbi Jin and Raymond van Bommel for the composition
of this booklet and the translation into English of most of the problems and
the solutions.
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Dutch delegation

The Dutch team for the virtual IMO 2020 consists of

• Jesse Fitié (18 years old)

– bronze medal at IMO 2019

• Jovan Gerbscheid (17 years old)

– silver medal at BxMO 2018
– bronze medal at IMO 2018, bronze medal at IMO 2019

• Jippe Hoogeveen (17 years old)

– bronze medal at IMO 2018, bronze medal at IMO 2019

• Rafaël Houkes (18 years old)

– gold medal at BxMO 2020

• Tjeerd Morsch (18 years old)

– bronze medal at BxMO 2019, silver medal at BxMO 2020
– observer C at IMO 2019

• Hanne Snijders (18 years old)

– bronze medal at EGMO 2019, bronze medal at EGMO 2020

Also part of the IMO/CMC selection, but not officially part of the IMO
team, are:

• Jelle Bloemendaal (16 years old)

– bronze medal at BxMO 2019, silver medal at BxMO 2020

• Kevin van Dijk (16 years old)

– bronze medal at BxMO 2020

• Casper Madlener (15 years old)

– silver medal at BxMO 2020

The team is coached by

• Quintijn Puite (team leader), Eindhoven University of Technology
• Birgit van Dalen (deputy leader), Leiden University
• Jeroen Huijben (observer B), University of Amsterdam
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First Round, January 2019

Problems

A-problems

1. Arthur has written down five distinct positive integers smaller than 10. If
you add any two of these five numbers, then the result will never be equal
to 10.
Which number did Arthur write down for sure?

A) 1 B) 2 C) 3 D) 4 E) 5

2. On a 2019×2019 chess board, there is a contagious disease. Each day some
of the squares on the chess board are sick and the rest are healthy. A
healthy square bordering a sick square (along a side), becomes sick itself
the next day. A sick square will always be healthy the next day. A healthy
square that has been sick before, can become sick again (if it is infected by
one of the adjacent squares). On day 1, only the middle square is sick.
How many squares are sick on day 100?

A) 200 B) 298 C) 396 D) 9999 E) 10000

3. Out of a circular disk of radius 3, we cut three small disks of radius 1 in
the way depicted in the figure on the left. This causes the remainder of
the big disk to fall apart into two pieces. The bottom part is rotated 90
degrees and is put on top of the upper part as shown in the figure on the
right. The part where the two pieces overlap is coloured a bit darker.
What is the total area of the figure on the right (i.e. both the light and
dark grey parts together)?

A) 4π B) 9
2π C) 19

4 π D) 5π E) 21
4 π
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4. There are 13 distinct multiples of 7 that consist of two digits. You want
to create a longest possible chain consisting of these multiples, where two
multiples can only be adjacent if the last digit of the left multiple equals
the first digit of the right multiple. You can use each multiple at most once.
For example, 21 – 14 – 49 is an admissible chain of length 3.
What is the maximum length of an admissible chain?

A) 6 B) 7 C) 8 D) 9 E) 10

5. In a table with two rows and five columns, each of the squares is coloured
black or white according to the following rules:

• Two adjacent columns may never have the same number of black
squares.

• Two 2×2-squares that overlap in one column may never have the same
number of black squares.

How many possible colourings of the table comply with these rules?

A) 6 B) 8 C) 12 D) 20 E) 24

6. Which of the following numbers is the largest number you can get by
separating the numbers 1, 2, 3, 4, and 5 by using each of the operations
+, −, :, and× exactly once, where you may use parentheses to indicate
the order in which the operations should be executed? For example:
(5− 3)×(4 + 1) : 2 = 5.

A) 21 B) 53
2 C) 33 D) 69

2 E) 35

7. Agatha, Isa and Nick each have a different kind of bike. One of them has
an electric bike, one has a racing bike, and one has a mountain bike. The
bikes have different colours: green, blue and black. The three owners make
two statements each, of which one is true and the other is false:

• Agatha says: “I have an electric bike. Isa has a blue bike.”

• Isa says: “I have a mountain bike. Nick has an electric bike.”

• Nick says: “I have a blue bike. The racing bike is black.”

Exactly one of the following statements is certainly true. Which one?

A) Agatha has a green bike. D) Isa has a mountain bike.
B) Agatha has a mountain bike. E) Nick has an electric bike.
C) Isa has a green bike.
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8.

A B

CD

E F

Quadrilateral ABCD has right angles at A and D. A
circle of radius 10 fits neatly inside the quadrilateral
and touches all four sides. The length of edge BC
is 24. The midpoint of edge AD is called E and the
midpoint of edge BC is called F .
What is the length of EF?

A) 43
2 B) 13

2

√
11 C) 33

5

√
11 D) 22 E) 45

2

B-problems
The answer to each B-problem is a number.

1. Every day, Maurits bikes to school. He can choose between two different
routes. Route B is 1.5 km longer than route A. However, because he
encounters fewer traffic lights, his average speed along route B is 2 km/h
higher than along route A. This makes that travelling along the two routes
takes exactly the same amount of time.
How long does it take for Maurits to bike to school?

2. Starting with a positive integer, a fragment of that number is any positive
number obtained by removing one or more digits from the beginning and/or
end of that number. For example: the numbers 2, 1, 9, 20, 19, and 201 are
the fragments of 2019.
What is the smallest positive integer n such that the following holds: there
is a fragment of n such that when you add this fragment to n itself, you
get 2019?

3. Inside an equilateral triangle, a circle is drawn that
touches all three sides. The radius of the circle is
10. A second, smaller, circle touches the first circle
and two sides of the triangle. A third, even smaller,
circle touches the second circle and two sides of the
triangle (see the figure). What is the radius of the
third circle?

4. Alice has a number of cards. Each card contains three of the letters A
to I. For any choice of two of those letters, there is at least one card that
contains both letters.
What is the smallest number of cards that Alice can have?
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Solutions

A-problems

1. E) 5 5. D) 20

2. E) 10000 6. E) 35

3. D) 5π 7. D) Isa has a mountain bike.

4. B) 7 8. D) 22

B-problems

1. 45 minutes

2. 1836

3. 10
9

4. 12
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Second Round, March 2019

Problems

B-problems
The answer to each B-problem is a number.

B1. After breakfast, the sisters Anna and Birgit depart for school, each going
to a different school. Their house is next to a bicycle path running between
the two schools. Anna is cycling with a constant speed of 12 km per hour
and Birgit is walking in the opposite direction with a constant speed of 4
km per hour. They depart at the same time. Shortly after their departure,
mother notes that the girls have forgotten their lunch and decides to go
after them. Exactly 10 minutes after Anna and Birgit have left, mother
departs on her electric bike. First, she catches up with Anna. She hands
her a lunch box, immediately turns around, and goes after Birgit. When
she catches up with Birgit, she hands her a lunch box and immediately
rides back home. Mother always rides at a constant speed of 24 km per
hour.
How many minutes after the departure of Anna and Birgit does mother
return home?

B2. In a tall hat there are one hundred notes, numbered from 1 to 100. You
want to have three notes with the property that each of the three numbers
is smaller than the sum of the other two. For example, the three notes
numbered 10, 15, and 20 would be suitable (as 10 < 15 + 20, 15 < 10 + 20,
and 20 < 10 + 15), but the notes numbered 3, 4, and 7 would not (as 7 is
not smaller than 3 + 4). You may (without looking at the numbers on the
notes) take some notes from the hat.
What is the smallest number of notes you have to take to be sure to have
three notes that meet your wish?

B3.

1
−1

1

−1

1

1

−1

−1

−1

−11

−1
On each of the twelve edges of a cube we write the
number 1 or −1. For each face of the cube, we multiply
the four numbers on the edges of this face and write
the outcome on this face. Finally, we add the eighteen
numbers that we wrote down.
What is the smallest (most negative) result we can get?
In the figure you see an example of such a cube. You cannot see the numbers
on the back of the cube.
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B4. If you try to divide the number 19 by 5, you will get a remainder. The
number 5 fits 3 times in 19 and you will be left with 4 as remainder. There
are two positive integers n having the following property: if you divide n2

by 2n+ 1, you will get a remainder of 1000.
What are these two integers?

B5.

A B

CD

2

2

In a square ABCD of side length 2 we draw lines from
each vertex to the midpoints of the two opposite sides.
For example, we connect A to the midpoint of BC and to
the midpoint of CD. The eight resulting lines together
bound an octagon inside the square (see figure).
What is the area of this octagon?

C-problems For the C-problems not only the answer is important; you also have to

describe the way you solved the problem.

C1. We consider sequences a1, a2, . . . , an consisting of n integers. For given
k ≤ n, we can partition the numbers of the sequence into k groups as
follows: a1 goes in the first group, a2 in the second group, and so on until
ak which goes in the k-th group. Then ak+1 goes in the first group again,
ak+2 in the second group, and so on. The sequence is called k-composite
if this partition has the property that the sums of the numbers in the k
groups are equal.

The sequence 1, 2, 3, 4,−2, 6, 13, 12, 17, 8, for instance, is 4-composite as

1 + (−2) + 17 = 2 + 6 + 8 = 3 + 13 = 4 + 12.

However, this sequence is not 3-composite, as the sums 1 + 4 + 13 + 8,
2 + (−2) + 12, and 3 + 6 + 17 do not give equal outcomes.

(a) Give a sequence of 6 distinct integers that is both 2-composite and
3-composite.

(b) Give a sequence of 7 distinct integers that is 2-composite, 3-composite,
and 4-composite.

(c) Find the largest k ≤ 99 for which there exists a sequence of 99 distinct
integers that is k-composite. (Give an example of such a sequence and
prove that such a sequence does not exist for greater values of k.)
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C2. A year is called interesting if it consists of four distinct digits. For example,
the year 2019 is interesting. It is even true that all years from 2013 up
to and including 2019 are interesting: a sequence of seven consecutive
interesting years.

(a) Determine the next sequence of seven consecutive interesting years
and prove that this is indeed the next such sequence.

(b) Prove that there is no sequence of eight consecutive interesting years
within the years from 1000 to 9999.
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Solutions

B-problems

1. 42

2. 11

3. −12

4. 666 and 1999

5. 2
3

C-problems

C1. (a) An example of a correct sequence is 5, 7, 6, 3, 1, 2. This sequence
consists of six distinct numbers and is 2-composite since 5 + 6 + 1 =
7 + 3 + 2. It is also 3-composite since 5 + 3 = 7 + 1 = 6 + 2.

This is just one example out of many possible correct solutions. Below
we describe how we found this solution.

We are looking for a sequence a1, a2, a3, a4, a5, a6 that is 2-composite
and 3-composite. Hence, we need that

a1 + a4 = a2 + a5 = a3 + a6 and a1 + a3 + a5 = a2 + a4 + a6.

If we choose a4 = −a1, a5 = −a2, and a6 = −a3, then the first two
equations hold. The third equation gives us a1 +a3−a2 = a2−a1−a3,
and therefore a1 + a3 = a2. We choose a1 = 1, a3 = 2 (and therefore
a2 = 3). We obtain the sequence 1, 3, 2,−1,−3,−2 consisting of six
distinct integers. If we wish to do so, we can increase all six numbers
by 4 to get a solution with only positive numbers: 5, 7, 6, 3, 1, 2.

(b) A possible solution is 8, 17, 26, 27, 19, 10, 1. This sequence consists of
seven distinct integers and is 2-composite since 8 + 26 + 19 + 1 =
17 + 27 + 10. It is 3-composite since 8 + 27 + 1 = 17 + 19 = 26 + 10.
It is also 4-composite since 8 + 19 = 17 + 10 = 26 + 1 = 27.

This is just one example out of many possible correct solutions. Below
we describe how we found this solution.
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We are looking for a sequence a1, a2, a3, a4, a5, a6, a7 that is 2-, 3-, and
4-composite. Hence, we need that

a1 + a3 + a5 + a7 = a2 + a4 + a6, (1)

a1 + a4 + a7 = a2 + a5 = a3 + a6, (2)

a1 + a5 = a2 + a6 = a3 + a7 = a4. (3)

We notice that in equation (1) we have a1 + a5 and a3 + a7 on the left,
and a2 + a6 and a4 on the right. If the sequence is 4-composite, these
four numbers are equal. Hence, we find that a 4-composite sequence is
automatically 2-composite as well.

From the equations in (3) it follows that

a1 = a4 − a5, a2 = a4 − a6, a3 = a4 − a7.

Substituting this in the equations (2), we obtain

2a4 + a7 − a5 = a4 + a5 − a6 = a4 + a6 − a7.

Subtracting a4 from each part, we get

a4 + a7 − a5 = a5 − a6 = a6 − a7.

Hence, we obtain

a4 = (a5 − a6)− (a7 − a5) = 2a5 − a6 − a7,
a5 = (a6 − a7) + a6 = 2a6 − a7.

We have thus expressed a1, a2, a3, a4, and a5 in terms of a6 and a7.
Every solution is obtained by a suitable choice of a6 and a7 for which
the seven numbers become distinct. We try a6 = 10 and a7 = 1, and
find:

a5 = 2·10−1 = 19, a4 = 2·19−10−1 = 27, a3 = 27−1 = 26,

a2 = 27− 10 = 17, and a1 = 27− 19 = 8.

Hence, we have found a solution.

(c) The largest k for which a k-composite sequence of 99 distinct integers
exists, is k = 50. An example of such a sequence is

1, 2, . . . , 48, 49, 100, 99, 98, . . . , 52, 51.

The 99 integers in the sequence are indeed distinct and we see that
1 + 99 = 2 + 98 = . . . = 48 + 52 = 49 + 51 = 100, so this sequence is
50-composite.
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Now suppose that k > 50 and that we have a k-composite sequence
a1, a2, . . . , a99. Consider the group that contains the number a49.
Since 49− k < 0 and 49 + k > 99, this group cannot contain any other
number beside a49. Next, consider the group containing the number
a50. Since 50− k < 0 and 50 + k > 99, this group cannot contain any
other number beside a50. Hence, the numbers a49 and a50 each form
a group by themselves and must therefore have the same value. But
this is not allowed since the 99 numbers in the sequence had to be
distinct.

C2. (a) The years 2103 to 2109 are seven consecutive interesting years. If
there is an earlier sequence of seven, then it must start before 2100.
We shall now prove that this is not possible.

Because an interesting year cannot end with the digits 99, the first two
digits are the same for all years in a sequence of consecutive interesting
years (of four digits). Now suppose we have seven consecutive years
starting with digits 20. The seven final digits are consecutive and
unequal to 0 and 2, and therefore also unequal to 1. The seven final
digits must be the digits 3 to 9, in this exact order. Hence, the third
digit must be the only remaining digit, namely digit 1. We conclude
that 2013 to 2019 is the only sequence of seven consecutive interesting
years between 2000 and 2100.

(b) Suppose that there is a sequence of eight consecutive interesting years
between 1000 and 9999. Because an interesting year cannot end with
99, all eight years have the same first two digits. If also the third digit
does not change, then there are only 7 possibilities for the last digit,
which is not enough. Therefore, there are two consecutive years in our
sequence of the shape abc9 and abd0 with d = c+ 1. Because there
are eight possible final digits, these must be the eight digits unequal
to a and b. Hence, both c and d = c + 1 must occur as final digit.
Because the numbers abcc and abdd cannot occur, this means that in
our sequence both abcd and abdc must occur. The difference between
these two numbers is 9, and our sequence consists of eight consecutive
numbers. This is also not possible. We have obtained a contradiction,
and conclude that the assumption that there exists a sequence of eight
consecutive interesting years between 1000 and 9999 is wrong.
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Final Round, September 2019

Problems

1. A complete number is a 9 digit number that contains each of the digits 1 to
9 exactly once. The difference number of a number N is the number you
get by taking the differences of consecutive digits in N and then stringing
these digits together. For instance, the difference number of 25143 is equal
to 3431. The complete number 124356879 has the additional property that
its difference number, 12121212, consists of digits alternating between 1
and 2.
Determine all a with 3 ≤ a ≤ 9 for which there exists a complete number
N with the additional property that the digits of its difference number
alternate between 1 and a.

2. There are n guests at a party. Any two guests are either friends or not friends.
Every guest is friends with exactly four of the other guests. Whenever a
guest is not friends with two other guests, those two other guests cannot
be friends with each other either.
What are the possible values of n?

3. Points A, B, and C lie on a circle with centre M . The reflection of point
M in the line AB lies inside triangle ABC and is the intersection of the
angular bisectors of angles A and B. (The angular bisector of an angle is
the line that divides the angle into two equal angles.) Line AM intersects
the circle again in point D.
Show that |CA| · |CD| = |AB| · |AM |.

4. The sequence of Fibonacci numbers F0, F1, F2, . . . is defined by F0 = F1 = 1
and Fn+2 = Fn + Fn+1 for all n ≥ 0. For example, we have

F2 = F0 + F1 = 2, F3 = F1 + F2 = 3, F4 = F2 + F3 = 5, F5 = 8.

The sequence a0, a1, a2, . . . is defined by

an =
1

FnFn+2
for all n ≥ 0.

Prove that for all m ≥ 0 we have:

a0 + a1 + a2 + · · ·+ am < 1.
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5. Thomas and Nils are playing a game. They have a number of cards,
numbered 1, 2, 3, et cetera. At the start, all cards are lying face up on
the table. They take alternate turns. The person whose turn it is, chooses
a card that is still lying on the table and decides to either keep the card
himself or to give it to the other player. When all cards are gone, each of
them calculates the sum of the numbers on his own cards. If the difference
between these two outcomes is divisible by 3, then Thomas wins. If not,
then Nils wins.

(a) Suppose they are playing with 2018 cards (numbered from 1 to 2018)
and that Thomas starts. Prove that Nils can play in such a way that
he will win the game with certainty.

(b) Suppose they are playing with 2020 cards (numbered from 1 to 2020)
and that Nils starts. Which of the two players can play in such a way
that he wins with certainty?

Solutions

1. For a = 4, an example of such a number is 126734895. For a = 5, an
example is the number 549832761. (There are other solutions as well.)

We will show that for a = 3, 6, 7, 8, 9 there is no complete number with a
difference number equal to 1a1a1a1a. It then immediately follows that there
is also no complete number N with difference number equal to a1a1a1a1
(otherwise, we could write the digits of N in reverse order and obtain a
complete number with difference number 1a1a1a1a).

For a equal to 6, 7, 8, and 9, no such number N exists for the following
reason. For the digits 4, 5, and 6, there is no digit that differs by a from
that digit. Since the difference number of the complete number N is equal
to 1a1a1a1a, every digit of N , except the first, must be next to a digit that
differs from it by a. Hence, the digits 4, 5, and 6 can only occur in the first
position of N , which is impossible.

For a = 3 the argument is different. If we consider the digits that differ by
3, we find the triples 1–4–7, 2–5–8, and 3–6–9. If the 1 is next to the 4 in
N , the 7 cannot be next to the 4 and so the 7 must be the first digit of
N . If the 1 is not next to the 4, the 1 must be the first digit of N . In the
same way, either the 2 or the 8 must be the first digit of N as well. This is
impossible.
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2. We first consider the friends of one guest, say Marieke. We know that
Marieke has exactly four friends at the party, say Aad, Bob, Carla, and
Demi. The other guests (if there are any other guests) are not friends
with Marieke. Hence, they cannot have any friendships among themselves
and can therefore only be friends with Aad, Bob, Carla, and Demi. Since
everyone has exactly four friends at the party, each of them must be friends
with Aad, Bob, Carla, and Demi (and with no one else).

Since Aad also has exactly four friends (including Marieke), the group of
guests that are not friends with Marieke can consist of no more than three
people. If the group consists of zero, one, or three people, we have the
following solutions (two guests are connected by a line if they are friends):

A

B C

D

M

A B

CD

M

M

ABCD

Solutions with five, six, and eight guests in total.

Now we will show that it is not possible for this group to consist of two
people. In that case, Aad would have exactly one friend among Bob, Carla,
and Demi. Assume, without loss of generality, that Aad and Bob are friends.
In the same way, Carla must be friends with one of Aad, Bob, and Demi.
Since Aad and Bob already have four friends, Carla and Demi must be
friends. However, since they are both not friends with Aad, this contradicts
the requirement in the problem statement.

We conclude that there can be five, six, or eight guests at the party. Hence,
the possible values for n are 5, 6, and 8.

3. Let I be the reflection of point M in the line AB. We define α = ∠CAI
and β = ∠CBI. Since AI is the angular bisector of ∠CAB, we find that
∠IAB = α. Since I is the reflection of M in the line AB, we find that
∠BAM = α. Triangle AMC is isosceles with apex M , because |AM | =
|CM |. Hence, we see that ∠MCA = ∠CAM = 3α. In the same way, we
see that ∠IBA = ∠ABM = β and ∠MCB = 3β. The sum of the angles of
triangle ABC is therefore 2α+(3α+3β)+2β = 180◦. From this, we conclude
that α+β = 180◦

5 = 36◦, and hence that ∠ACB = 3α+3β = 3 ·36◦ = 108◦.
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M

A
B

C

I

D

Since MAB is an isosceles triangle (as |AM | = |BM |), we see that α =
β = 18◦. It follows from this that ∠CAB = 2α = ∠ABC and therefore
that triangle ACB is isosceles. By considering the sum of the angles in
triangle AMC, we find that ∠AMC = 180◦ − 6α = 72◦. Hence we also
find that ∠CMD = 180◦ − ∠AMC = 108◦. We have already seen that
∠ACB = 108◦. It follows that triangles ACB and CMD are both isosceles
triangles with an angle of 108◦ at the apex. Hence, they are similar triangles.

This implies that |CM |
|CD| = |AC|

|AB| . By multiplying by both denominators and

observing that |CM | = |AM |, we obtain the required result.

4. Note that for all n ≥ 0 the number an can be rewritten as follows:

an =
1

FnFn+2
=

Fn+1

FnFn+2
· 1

Fn+1
=
Fn+2 − Fn

FnFn+2
· 1

Fn+1

=

(
1

Fn
− 1

Fn+2

)
· 1

Fn+1
=

1

FnFn+1
− 1

Fn+1Fn+2
.

We now get that for each m ≥ 0 the sum a0 + a1 + a2 + · · ·+ am equals(
1

F0F1
− 1

F1F2

)
+

(
1

F1F2
− 1

F2F3

)
+ · · ·+

(
1

FmFm+1
− 1

Fm+1Fm+2

)
.

In this sum all terms cancel, except the first and last. In this way, we get

a0 + a1 + a2 + · · ·+ am =
1

F0F1
− 1

Fm+1Fm+2
= 1− 1

Fm+1Fm+2
< 1.

5. (a) Thomas and Nils both make 1009 moves and Nils makes the last move.
Nils can make sure that the last card on the table contains a number
that is not divisible by 3. Indeed, he could start taking cards with
numbers that are divisible by 3, until all these cards are gone. Because
there are only 672 such cards, he has enough turns to achieve that.
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We now consider the situation before the last move of Nils. Let k
be the number on the last card, and let the sums of the numbers
of Thomas and Nils at that very moment be a and b. Nils has two
options. If he gives away the last card, the difference between the
outcomes becomes (a+ k)− b, and if he keeps the card, the difference
becomes a − (b + k). Nils is able to win, unless both numbers are
divisible by 3. But in that case (a+ k − b)− (a− b− k) = 2k would
also be divisible by 3. Because k is not divisible by 3, the number 2k
is also not divisible by 3 and hence Nils can win with certainty.

(b) Nils can win. We distinguish three types of cards, depending on
the number on the card: type 1 (the number has remainder 1 when
dividing by 3), type 2 (the number has remainder 2 when dividing by
3), and type 3 (the number is divisible by 3). Because 2019 = 3 · 673
and the card 2020 is of type 1, there are 674 cards of type 1, 673 cards
of type 2, and 673 cards of type 3.

In order to win, Nils chooses a card of type 3 in his first turn (and
gives it to Thomas). Then there are 674 cards of type 1 left, 673 of
type 2, and 672 of type 3. In the next turns he responds to Thomas’s
move in the following way (as long as he is able to).

(i) If Thomas chooses a card of type 1, then Nils chooses a card of
type 2 and gives it to the same person that got Thomas’s card.

(ii) If Thomas chooses a card of type 2, then Nils chooses a card of
type 1 and gives it to the same person that got Thomas’s card.

(iii) If Thomas chooses a card of type 3, then Nils does the same (and
gives the card to Thomas).

As long as Nils keeps this up, the sum of each player’s cards is divisible
by 3 after his turn (because a number of type 1 and a number of type
2 add up to a number which is divisible by 3).

Because the number of cards of type 3 is always even after Nils’s turn,
Nils can always execute his planned move in case (iii). Because the
number of cards of type 1 is always 1 greater than that of type 2 after
Nils’s turn, he can also always execute his planned move in case (ii).
Only at the moment when all cards of type 2 are gone and Thomas
takes the last card of type 1 (case (i)), Nils cannot execute his planned
move. However, in that case Nils cannot lose anymore. Indeed, after
Thomas’s turn the sum of the cards of one player is still divisible by
3, but the sum of the cards of the other player is not divisible by 3
anymore. Because there are only cards of type 3 left now, this will stay
the same until all cards are gone. At the end, the difference between
the sums of both players is not divisible by 3 and Nils wins.
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BxMO Team Selection Test, March 2020

Problems

1. For an integer n ≥ 3 we consider a circle containing n vertices. To each
vertex we assign a positive integer, and these integers do not necessarily
have to be distinct. Such an assignment of integers is called stable if the
product of any three adjacent integers is n. For how many values of n with
3 ≤ n ≤ 2020 does there exist a stable assignment?

2. In an acute triangle ABC the foot of the altitude from A is called D. Let D1

and D2 be reflections of D in AB and AC, respectively. The intersection of
BC and the line through D1 parallel to AB, is called E1. The intersection
of BC and the line through D2 parallel to AC, is called E2. Prove that
D1, D2, E1, and E2 lie on a circle whose centre lies on the circumcircle of
4ABC.

3. Find all functions f : R→ R satisfying

f(x2y) + 2f(y2) =
(
x2 + f(y)

)
· f(y)

for all x, y ∈ R.

4. On a circle with centre M there are three distinct points A, B, and C such
that |AB| = |BC|. The point D lies inside the circle in such a way that
4BCD is isosceles. The second intersection point of AD and the circle is
called F . Prove that |FD| = |FM |.

5. A set S consisting of 2019 (distinct) positive integers has the following
property: the product of any 100 elements of S is a divisor of the product of
the other 1919 elements. What is the maximum number of prime numbers
that S could contain?
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Solutions

1. Suppose n is not a multiple of 3 and that we have a stable assignment
of the numbers a1, a2, . . . , an, in that order on the circle. Then we have
aiai+1ai+2 = 3 for all i, where the indices are considered modulo n. Hence,

ai+1ai+2ai+3 = n = aiai+1ai+2,

which yields ai+3 = ai (as all numbers are positive). Through induction,
we find that a3k+1 = a1 or all integers k ≥ 0. Because n is not a multiple of
3, the numbers 3k + 1 for k ≥ 0 take on all values modulo n: indeed, 3 has
a multiplicative inverse modulo n, hence k ≡ 3−1 · (b− 1) implies 3k+ 1 ≡ b
mod n for all b. We conclude that all numbers on the circle must equal a1.
Hence, we have a31 = n, where a1 is a positive integer. Hence, if n is not a
multiple of 3, then n must be a cube.

If n is a multiple of 3, then we put the numbers 1, 1, n, 1, 1, n, . . . in that
order on the circle. In that case, the product of three adjacent numbers
always equals 1 · 1 · n = n. If n is a cube, say n = m3, then we put
the numbers m,m,m, . . . on the circle. In that case, the product of three
adjacent numbers always equals m3 = n.

We conclude that a stable assignment exists if and only if n is a multiple of 3,
or a cube. Now we have the count the number of such n. The multiples of 3
with 3 ≤ n ≤ 2020 are 3, 6, 9, . . . , 2019; these are 2019

3 = 673 numbers. The
cubes with 3 ≤ n ≤ 2020 are 23, 33, . . . , 123, because 123 = 1728 ≤ 2020
and 133 = 2197 > 2020. These are 11 cubes, of which 4 are divisible by 3,
hence there are 7 cubes which are not a multiple of 3. Altogether, there
are 673 + 7 = 680 values of n satisfying the conditions. �

A

B CD

D1

D2

E1

E2

2. Let K be the midpoint of DD1, and let L be the midpoint of DD2. Then
K lies on AB and L lies on AC. Because ∠AKD = 90◦ = ∠ALD, the
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quadrilateral AKDL is cyclic. Hence, ∠DLK = ∠DAK = ∠DAB =
90◦ − ∠ABC. Moreover, KL is a midsegment in triangle DD1D2, hence
∠DLK = ∠DD2D1. We conclude that ∠DD2D1 = 90◦ − ∠ABC.

Because AC ⊥ DD2 en D2E2 ‖ AC, we have ∠DD2E2 = 90◦. Hence,
∠D1D2E2 = ∠D1D2D+∠DD2E2 = 90◦ −∠ABC + 90◦ = 180◦ −∠ABC.
On the other hand, as D1E1 ‖ AB, we have ∠D1E1E2 = ∠ABC, hence
we get ∠D1D2E2 = 180◦ − ∠D1E1E2. We conclude that D1E1E2D2 is a
cyclic quadrilateral.

Let M be the point such that AM is a diameter of the circumcircle of
4ABC. Thales’ theorem yields ∠ACM = 90◦. Hence, CM ⊥ AC, which
yields CM ⊥ D2E2 and CM ‖ DD2. Moreover, L is the midpoint of
DD2 and LC ‖ D2E2, hence LC is a midsegment in triangle DD2E2.
This means that C is the midpoint of DE2. Because CM ‖ DD2, we
get that CM is also a midsegment, hence CM intersects D2E2 in the
middle. As CM ⊥ D2E2, the line CM is the perpendicular bisector of
D2E2. Analogously, we get that BM is the perpendicular bisector of D1E1.
Hence, M is the intersection point of the perpendicular bisectors of two
of the chords of the circle through D1, D2, E1, and E2. Hence, M is the
centre of this circle. �

3. Substituting x = 1 gives f(y) + 2f(y2) = (1 + f(y))f(y), hence

2f(y2) = f(y)2. (4)

Using this, we can cancel the 2f(y2) on the left hand side of the original
functional equation against the f(y)2 on the right hand side:

f(x2y) = x2f(y).

Substituting y = 1 in this equations yields f(x2) = x2f(1), and substituting
y = −1 yields f(−x2) = x2f(−1). Because x2 takes on all non-negative
numbers as value when x ∈ R, we get

f(x) =

{
cx als x ≥ 0,

dx als x < 0,

with c = f(1) and d = −f(−1). Now substitute y = 1 in equation (4),
which yields 2f(1) = f(1)2, hence 2c = c2. It follows that c = 0 or
c = 2. If we actually substitute y = −1 in equation (4), then we find that
2f(1) = f(−1)2, hence 2c = (−d)2. For c = 0, we get d = 0, and for c = 2,
we get d = 2 or d = −2. So, there are three cases:

• c = 0, d = 0: then f(x) = 0 for all x;
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• c = 2, d = 2: then f(x) = 2x for all x;

• c = 2, d = −2: then f(x) = 2x for x ≥ 0, and f(x) = −2x for x < 0,
or, in other words, f(x) = 2|x| for all x.

Using the first function, both sides of the functional equation become 0, so
this function is a solution. Using the second function, we get 2x2y + 4y2

on the left hand side, and (x2 + 2y) · 2y = 2x2y + 4y2 on the right hand
side, so this function is a solution as well. Using the third function, we get
2|x2y|+ 4|y2| = 2x2|y|+ 4y2 on the left hand side, and (x2 + 2|y|) · 2|y| =
2x2|y|+ 4|y|2 = 2x2|y|+ 4y2 on the right hand side, so also this function is
a solution.

Altogether, we found the three solutions: f(x) = 0, f(x) = 2x, and
f(x) = 2|x|. �

M

A

B

C

D

F

4. We will prove that |FD| = |FC| and |FC| = |FM |, which proves the
statement.

In the cyclic quadrilateral ABCF , we have ∠BCF = 180◦ − ∠BAF . As
|AB| = |BC| = |BD| we also have ∠BAF = ∠BAD = ∠ADB, hence
∠BDF = 180◦ − ∠ADB = 180◦ − ∠BAF . We see that ∠BCF = ∠BDF .
Moreover, ∠DFB = ∠AFB and ∠CFB are inscribed angles on chords
AB and BC of the same length, hence ∠DFB = ∠CFB. Triangles BCF
and BDF have two pairs of equal angles; because they also have the side
BF in common, they are congruent. We conclude that |FC| = |FD| and
∠DBF = ∠CBF .

The inscribed angle theorem yields ∠CMF = 2∠CBF . From the equality
∠DBF = ∠CBF we just found, we get that 2∠CBF = ∠CBD = 60◦,
hence ∠CMF = 60◦. Moreover, |MC| = |MF | (radius of the circle), hence
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4CMF is isosceles with an angle of 60◦, which yields that the triangle is
equilateral. This means that |FC| = |FM |.
This concludes the proof that |FD| = |FC| = |FM |. �

5. The maximum number of prime numbers is 1819.

We start with the construction. Choose distinct primes p1, p2, . . . , p1819,
and let P = p1p2 · · · p1819. Let

S = {p1, p2, . . . , p1819, P, P · p1, . . . , P · p199}.

For each pi, there are 201 numbers in S that are divisible by pi (namely,
pi and all multiples of P ). Of these, at most one has two factors pi; the
rest has only one factor pi. If we now take 100 numbers from S, then their
product has at most 101 factors pi. The other numbers contain at least
101 numbers which are divisible by pi, hence their product has at least 101
factors pi. Because this holds for any pi, and the numbers in S do not have
any other prime factors, this implies that S has the desired property.

We now prove that S cannot contain more than 1819 primes. Consider a
prime divisor q of a number in S. Suppose that at most 199 numbers S
are divisible by q. Then we take the 100 elements of S having the most
factors q; these always have more factors q in total than the other elements,
which contradicts the condition in the problem statement. Hence, there
are at least 200 numbers in S which are divisible by q. If there are exactly
200, then we also get that the number of factors q in all of these numbers
must be equal, otherwise we get a contradiction again by taking the 100
elements having the most factors q.

We see that S contains at least 199 non-primes, because a prime p in S
divides at least 199 other elements of S. Suppose that S contains exactly
199 non-primes. Then the prime factor p in each of these 199 non-primes
occurs exactly once (namely, equally often as in the prime number p).
Moreover, the numbers in S cannot be divisible by a prime r that is not
contained in S, because then there would be at least 200 multiples of r
inside S, and these would be 200 non-primes, which is a contradiction.
We get that each of the 199 non-primes in S must be the product of the
primes in S. In particular, these 199 numbers are not distinct. This is a
contradiction, hence S must contain at least 200 non-primes, and hence at
most 1819 primes. �
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IMO Team Selection Test 1, June 2020

Problems

1. In an acute triangle ABC, the centre of the incircle is I, and |AC|+ |AI| =
|BC|. Prove that ∠BAC = 2∠ABC.

2. Determine all polynomials P (x) with real coefficients for which

P (x2) + 2P (x) = P (x)2 + 2.

3. For a positive integer n, we consider an n× n-board and tiles with sizes
1× 1, 1× 2, . . . , 1×n. In how many ways, can exactly 1

2n(n+ 1) squares of
the board be coloured red, so that the red squares can be covered by placing
the n tiles horizontally on the board, as well by placing the n vertically
on the board? Two colourings which are not identical, but which can be
obtained from one another by rotation or reflection, are counted as different
colourings.

4. Let a, b ≥ 2 be positive integers with gcd(a, b) = 1. Let r be the smallest
positive value that a

b −
c
d can take, where c and d are positive integers

satisfying c ≤ a and d ≤ b. Prove that 1
r is an integer.

Solutions

1.

A
B

C

I

Let D be a point on BC such that
|CD| = |AC|. Because |BC| =
|AC| + |AI|, the point D lies on
the interior of side BC, and we have
|BD| = |AI|. Because triangleACD
is isosceles, the angle bisector CI
is also the perpendicular bisector
of AD, hence A is the reflection of
D in CI. Hence, we get ∠CDI =
∠CAI = ∠IAB, hence 180◦−∠BDI =
∠IAB, which means that quadrilateral ABDI is cyclic. In this cyclic quad-
rilateral BD and AI have the same length. Therefore, AB and ID are
parallel. Hence, ABDI is an isosceles trapezium, which has equal angles at
the base. Hence, ∠CBA = ∠DBA = ∠BAI = 1

2∠BAC, which proves the
statement. �
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2. We rewrite the equation as

P (x2)− 1 =
(
P (x)− 1

)2
.

Let Q(x) = P (x)−1, then Q is a polynomial with real coefficients satisfying

Q(x2) = Q(x)2.

Suppose that Q is constant, say Q(x) = c with c ∈ R. Then we have
c = c2, hence c = 0 or c = 1. Both possibilities give rise to solutions.
Form now on, we may assume that Q is non-constant, hence we can write
Q(x) = bxn + R(x) with n ≥ 1, b 6= 0, and R(x) a polynomial with real
coefficients of degree at most n− 1. The polynomial equation then becomes

bx2n +R(x2) = b2x2n + 2bxn ·R(x) +R(x)2.

By comparing the coefficients in front of x2n on the left and right hand
side, we get b = b2. As b 6= 0, we must have b = 1. Subtracting x2n on
both sides, yields

R(x2) = 2xn ·R(x) +R(x)2.

If R is non-zero, then it has degree m ≥ 0. We have m < n. Then the
left hand side of this equation has degree 2m, and the right hand side has
degree m + n, as m + n > 2m. This is a contradiction. Hence, R must
be the zero polynomial, which yields Q(x) = xn. This polynomial indeed
satisfies the polynomial equation for Q.

Hence, we find the following solutions: P (x) = 1, P (x) = 2, and P (x) =
xn + 1 with n ≥ 1. �

3. The number of red squares must equal the total number of squares covered
by the n tiles, hence the tile are only put on top of red squares. Consider a
colouring of the board and the corresponding horizontal covering by the
tiles (where all tiles are places horizontally) and the vertical covering. We
will deduce a number of properties for the colouring, and then count how
many colourings there are. The tile whose size is 1× k is called the k-tile.

Because the horizontal covering contains an n-tile, each column has at
least one red square. In the vertical covering, each column must therefore
contain at least one tile; because there are exactly n tiles, this means that
there must be exactly one tile in each column. In the same way, each row
must contain exactly one tile in the horizontal covering. Now number the
rows and columns depending on the number of the tile that has been put
there: so row i is the row containing the i-tile in the horizontal covering,
and analogously for the columns.
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We will now prove that the square in row i and column j (which will be
called (i, j)) is red if and only if i+j ≥ n+1. We prove this using induction
on i. In row 1, there is only one red square, so that must be in the column
containing the n-tile in the vertical covering, i.e. column n. Hence, the
square (1, j) is red if and only if j = n, or if and only if 1 + j ≥ n+ 1. Now
let k ≥ 1 and suppose the statement has been proved for all i ≤ k. We want
to prove the statement for i = k + 1, i.e. that the square (k + 1, j) is red if
and only if k + 1 + j ≥ n+ 1, or j ≥ n− k. Consider a column j ≥ n− k.
Because of the induction hypothesis, we know exactly how many red squares
this column has in rows 1, 2, . . . , k: namely, the square (i, j) is red if and
only if i+j ≥ n+1, or i ≥ n+1−j; these are k−(n−j) = j+k−n squares.
In the other n− k rows, this column needs another j − (j + k− n) = n− k
red squares. Hence, this column has a red square in each of these rows, in
particular in the row i = k + 1. In row i = k + 1, the squares (i, j) with
j ≥ n− k are all red, and these are k + 1 squares. Hence, these are exactly
all red squares in row i = k + 1, hence the square (i, j) is red if and only if
j ≥ n− k, or if and only if i+ j ≥ n− k + k + 1 = n+ 1. This finishes the
proof by induction.

Now consider two adjacent rows with row numbers a and b, with a > b.
In column n− b, there is a red square row a (because a+ n− b > n), but
not in row b. In the row directly on the other side of row b (if this row
exists), there cannot be a red square in column n − b, because the red
squares in column n− b would otherwise not be consecutive, and then the
tile with number n− b cannot lie there. The row number of this row must
therefore be smaller than b. We conclude that the row numbers cannot
decrease first and then increase. Above and below row n, there must be a
row with a smaller number (or no row at all), and the row numbers must
descend in both directions from there. We see that the row numbers from
top to bottom must first ascend until we get to row n, and then they must
descend. The same can be proved for the column numbers.

Vice versa, we have to prove that if the row and columns numbers are first
ascending and then descending, then the horizontal and vertical tiles can be
put. To prove this, we colour the square (i, j) red if and only if i+j ≥ n+1.
For a fixed i, the red squares are the squares (i, j) with j ≥ n + 1 − i;
because of the order of the column numbers, these columns are adjacent.
Hence, in each row, the red squares are adjacent. The horizontal tiles can
be put exactly on top of the red squares. In the same way, this can be done
for the vertical tiles. For these row and column numbers, there was not
other way to choose the colouring, because we already know that for each
suitable colouring the square (i, j) is red if and only if i+ j ≥ n+ 1.

Altogether, we are looking for the number of ways to choose the row
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and column numbers such that the numbers are first ascending and then
descending; corresponding to each of these choices, there is exactly one
way to colour the squares so that they satisfy the conditions. The number
of ways to put the numbers 1 to n in an order that is first ascending and
then descending, equals the number of subsets of {1, 2, . . . , n− 1}. Namely,
each ordering corresponds to the subset of numbers that appear before the
number n; these can be sorted in a unique way (ascending), and the rest of
the numbers must be sorted descending and put after the n. The number
of subsets is 2n−1. Hence, the total number of colourings satisfying the
conditions, is (2n−1)2 = 22n−2. �

4. We will first show that it is possible to choose c and d such that a
b −

c
d = 1

bd .

Because gcd(a, b) = 1, there exists a multiplicative inverse b−1 of b modulo
a. Now let c with 1 ≤ c ≤ a be such that c ≡ −b−1 mod a. Then we
have bc ≡ −1 mod a, hence a | bc + 1. Define d = bc+1

a , which is a

positive integer. We have d = bc+1
a ≤ ba+1

a = b + 1
a . Because a ≥ 2 and

d is an integer, we get d ≤ b. All conditions are met. Hence, we have
a
b −

c
d = ad−bc

bd = bc+1−bc
bd = 1

bd .

If this is the smallest possible outcome, then we are done, because 1
r = bd

would be an integer. We will show that no smaller positive outcome is
achievable. Let c and d be as above, and suppose there are positive integers
c′ ≤ a and d′ ≤ b such that 0 < a

b −
c′

d′ <
1
bd . We will derive a contradiction.

Let x = ad′− bc′, then we have a
b −

c′

d′ = x
bd′ , hence xbd < bd′, which yields

xd < d′. We also know that x > 0. Hence, 0 < xd < d′ ≤ b, which means
that xd and d′ are two distinct numbers whose difference is less than b.
Moreover, from x = ad′ − bc′ we get that x ≡ ad′ mod b. On the other
hand, we know that ad − bc = 1, hence ad ≡ 1 mod b, hence xad ≡ x
mod b. Combining this, we get ad′ ≡ xad mod b. Because gcd(a, b) = 1
we may divide by a, hence d′ ≡ xd mod b. However, we already saw that
d′ and xd are distinct numbers whose difference is smaller than b, hence
this is impossible.

We conclude that the c and d we found indeed give the smallest possible
outcome, and hence 1

r is an integer. �
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IMO Team Selection Test 2, June 2020

Problems

1. Let a1, a2, . . . , a2020 be real numbers, not necessarily distinct. For all
n ≥ 2020, let an+1 be the minimal real root of the polynomial

Pn(x) = x2n + a1x
2n−2 + a2x

2n−4 + . . .+ an−1x
2 + an,

if it exists. Assume that an+1 exists for all n ≥ 2020. Prove that an+1 ≤ an
for all n ≥ 2021.

2. Ward and Gabrielle are playing a game on a large sheet of paper. At
the start of the game, there are 999 ones on the sheet of paper. Ward
and Gabrielle each take turns alternatingly, and Ward has the first turn.
During their turn, a player must pick two numbers a and b on the sheet
such that gcd(a, b) = 1, erase these numbers from the sheet, and write the
number a+ b on the sheet. The first player who is not able to do so, loses.
Determine which player can always win this game.

3. Determine all pairs (a, b) of positive integers for which

a+ b = ϕ(a) + ϕ(b) + gcd(a, b).

Here, ϕ(n) is the number of integers k ∈ {1, 2, . . . , n} satisfying gcd(n, k) =
1.

4. Let ABC be an acute triangle and let P be the intersection of the tangents
in B and C to the circumcircle of4ABC. The line through A perpendicular
to AB and the line through C perpendicular to AC intersect in a point
X. The line through A perpendicular to AC and the line through B
perpendicular to AB intersect in a point Y . Prove that AP ⊥ XY .
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Solutions

1. If x = α is a root of Pn, then x = −α is root of Pn as well, as all terms of
Pn have even degree. The minimal root of Pn therefore cannot be positive.
Therefore an ≤ 0 for all n > 2020. We have Pn+1(x) = x2 · Pn(x) + an+1.
Substitute x = an+1; as that is a root of Pn, we have Pn+1(an+1) =
0 + an+1 ≤ 0.

As the maximal degree term in Pn(x) is x2n, there exists an N < 0 such
that Pn(x) > 0 for all x < N . Taking for example −N = max(2, |a1| +
|a2| + . . . + |an|), we see for x < N that x2i−2 ≤ x2n−2 for all 1 ≤ i ≤ n
and therefore that∣∣a1x2n−2 + a2x

2n−4+ . . . +an−1x
2 + an

∣∣
≤
∣∣a1x2n−2∣∣+

∣∣a2x2n−4∣∣+ . . .+
∣∣an−1x2∣∣+ |an|

≤ |a1|x2n−2 + |a2|x2n−2 + . . .+ |an−1|x2n−2 + |an|x2n−2

≤ (|a1|+ |a2|+ . . .+ |an|)x2n−2

≤ −N · x2n−2

< x2n,

so x2n + a1x
2n−2 + a2x

2n−4 + . . .+ an−1x
2 + an > 0. Hence for n ≥ 2021

there exists an N < 0 with Pn(x) > 0 for all x < N , whereas Pn(an) ≤ 0.
Therefore Pn(x) has a root smaller than an. As an+1 is the minimal root,
we have an+1 ≤ an. �

2. Gabrielle can always win using the following strategy: during each of her
turns, she picks the largest two numbers on the sheet as a and b. Using
induction on k, we will prove that she is always allowed to do so, and that
after her k-th turn, the sheet contains the number 2k + 1 and 998 − 2k
ones.

In his first turn, Ward can only pick a = b = 1, after which the sheet
contains the number 2 and 997 ones. Gabrielle then picks the two largest
numbers, a = 2 and b = 1, after which the sheet contains 3 and 996 ones.
This finishes the basis k = 1 of the induction.

Now suppose that for some m ≥ 1 after Gabrielle’s m-th turn the sheet
contains the number 2m + 1 and 998 − 2m ones. If 998 − 2m = 0, then
Ward cannot make a move. If not, then Ward can do one of two things,
either pick a = b = 1 or pick a = 2m+ 1 and b = 1. We consider these two
cases separately:

• If Ward picks a = b = 1, then the sheet contains the number 2m+ 1,
the number 2, and 996− 2m ones. Gabrielle then picks the two largest
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numbers, so a = 2m+ 1 and b = 2 (which is allowed since their gcd is
1). After her turn the sheet contains the numbers 2m+3 = 2(m+1)+1
and 996− 2m = 998− 2(m+ 1) ones.

• If Ward picks a = 2m + 1 and b = 1, then the sheet contains the
number 2m+2 and 997−2m ones. Gabrielle then picks the two largest
numbers, so a = 2m+ 2 and b = 1 (which is allowed since their gcd is
1). Note that there is a one left, as 997− 2m is odd, so not equal to 0.
After her turn the sheet contains the numbers 2m+ 3 = 2(m+ 1) + 1
and 996− 2m = 998− 2(m+ 1) ones.

This completes the induction.

Therefore Gabrielle can always make a move. After Gabrielle’s turn 499
the only number left on the sheet is 999, so Ward can no longer make a
move, and Gabrielle wins. �

3. First suppose that a = 1. Then ϕ(1) = 1. For all positive integers b we have
gcd(a, b) = 1. Therefore in this case the equation is 1 + b = 1 +ϕ(b) + 1, or
equivalently, ϕ(b) = b− 1. This is equivalent to the statement that there
exists a unique integer from {1, 2, . . . , b}; which then has to be b itself (since
unless b = 1, we have gcd(b, b) > 1, but if b = 1 we have ϕ(b) = b). In other
words, this is equivalent to b being a prime number. Hence the solutions
for a = 1 are precisely the pairs (1, p) with p a prime number. Similarly,
the solutions for b = 1 are precisely the pairs (p, 1) with p a prime number.

Now assume that a, b ≥ 2. As gcd(b, b) > 1 we have ϕ(b) ≤ b−1. Therefore

gcd(a, b) = a+ b− ϕ(a)− ϕ(b) ≥ a− ϕ(a) + 1.

Let p be the minimal prime divisor of a (which exists as a ≥ 2). Since for all
multiples tp ≤ a of p, we have gcd(tp, a) > 1, it follows that a−ϕ(a) ≥ 1

p ·a.
Therefore we have

gcd(a, b) ≥ a− ϕ(a) + 1 ≥ a

p
+ 1.

The two largest divisors of a are a and a
p . Since gcd(a, b) is a divisor of a

that is at least a
p + 1, it must equal a. Hence gcd(a, b) = a. In the same

way we prove that gcd(a, b) = b. So a = b.

The equation now is equivalent to 2a = 2ϕ(a) + a, so also to a = 2ϕ(a).
Note that 2 | a. Therefore write a = 2k ·m with k ≥ 1 and m odd. By
a well-known property of the ϕ-function, we have ϕ(a) = ϕ(2k) · ϕ(m) =
2k−1 ·ϕ(m), and the equation becomes 2k ·m = 2·2k−1 ·ϕ(m), or equivalently
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m = ϕ(m). Therefore m = 1, and a = b = 2k. Indeed, the equation holds
for all pairs (2k, 2k) with k ≥ 1.

Therefore the solutions of the equation are: the pairs (1, p) and (p, 1) for
prime numbers p, and (2k, 2k) for all positive integers k. �

A

B C

X

Y

P

4. Let M the circumcentre of 4ABC and let α = ∠BAC. We first show that
4BY A ∼ 4BMP and then that 4Y BM ∼ 4ABP . By the inscribed
angle theorem we have ∠BMC = 2∠BAC = 2α. Quadrilateral PBMC is a
kite with axis of symmetry PM (by the equality of radii |MB| = |MC| and
equality of tangent segments |PB| = |PC|), so MP bisects angle ∠BMC.
Therefore ∠BMP = 1

2∠BMC = α. Moreover, we have ∠PBM = 90◦

(tangent to a circle is perpendicular to its radius), so by the sum of angles
of a triangle we have ∠MPB = 90◦ − α.

On the other hand, we are given that ∠ABY = 90◦ and we also have
∠Y AB = ∠Y AC − ∠BAC = 90◦ − α. Therefore ∠ABY = ∠PBM and
∠Y AB = ∠MPB, from which follows that 4BY A ∼ 4BMP . From this

similarity it follows that |Y B|
|AB| = |MB|

|PB| . Combining this with the equality of

angles

∠Y BM = ∠Y BA+∠ABM = 90◦+∠ABM = ∠ABM+∠MBP = ∠ABP,

we see that 4Y BM ∼ 4ABP .

Let T now be the intersection of AP and YM , then we have

∠BY T = ∠BYM = ∠BAP = ∠BAT,

from which it follows that BY AT is a cyclic quadrilateral. Therefore
∠ATY = ∠ABY = 90◦, so AT ⊥ YM . Analogously, AP ⊥ XM . But
from this it now follows that YM and XM coincide and we get that
AP ⊥ XY . �
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IMO Team Selection Test 3, June 2020

1. For a positive integer n, let d(n) be the number of positive divisors of n.
Determine the positive integers k for which there exist positive integers a
and b satisfying

k = d(a) = d(b) = d(2a+ 3b).

2. Let a triangle ABC such that |AC| < |AB| be given, together with its
circumcircle. Let D be a varying point on the short arc AC. Let E be the
reflection of A in the internal angular bisector of ∠BDC. Prove that the
line DE passes through a fixed point, independent of where D lies.

3. Find all functions f : Z→ Z satisfying

f
(
−f(x)− f(y)

)
= 1− x− y

for all x, y ∈ Z.

4. Suppose k and n are positive integers such that k ≤ n ≤ 2k− 1. Julian has
a large pile of rectangular k×1-tiles. Merlijn picks a positive integer m, and
receives from Julian m tiles to place on an n×n-board. On each tile, Julian
writes whether this tile should be placed horizontally or vertically. Tiles
may not overlap on the board, and they must fit entirely inside the board.
What is the largest number m that Merlijn can pick while still guaranteeing
he can put all tiles on the board according to Julian’s instructions?
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Solutions

1. For i ≥ 0, let a = 2 · 5i and b = 3 · 5i. Then both a and b have 2(i + 1)
divisors. Moreover, we have 2a+ 3b = 4 · 5i + 9 · 5i = 13 · 5i, which also has
2(i+ 1) divisors. Therefore all even values of k satisfy the condition in the
problem.

Now suppose that k is odd. Then a has an odd number of divisors and
therefore is a square, say a = x2. The same reasoning shows that b is also a
square, say b = y2, and 2a+ 3b is also a square, say 2a+ 3b = z2. Therefore
we have

2x2 + 3y2 = z2.

We show that this equation has no positive integer solutions.

Suppose for a contradiction that this equation does have a positive integer
solution. Let (x, y, z) = (u, v, w) be the solution with minimal x+y+ z. So
2u2 + 3v2 = w2. Modulo 3 this equation is 2u2 ≡ w2. If u is not divisible
by 3, then u2 ≡ 1 mod 3, so w2 = 2u2 ≡ 2 mod 3, however, that isn’t
possible. Therefore u is divisible by 3, from which it follows that w is
divisible by 3 as well. Now 2u2 and w2 are both divisible by 9, so 3v2 is
divisible by 9. It follows that v is divisible by 3 as well. However, now
(x, y, z) = (u

3 ,
v
3 ,

w
3 ) also satisfies the equation, and it is a solution with

smaller x+ y + z than the supposed minimal one. This is a contradiction.
Therefore the equation 2x2 + 3y2 = z2 has no positive integer solutions.

It follows that no odd k satisfies the condition in the problem. The positive
integers k that satisfy that condition are therefore the even integers. �

2.

A
B

C

D

E
Let M be the intersection of the in-
ternal angular bisector of ∠BDC with
the circumcircle of 4ABC. As D
lies on the short arc AC, we see that
M lies on the arc BC not containing
A. We have ∠BDM = ∠MDC as
DM is the internal angular bisector
of ∠BDC, so arcs BM and CM have
the equal lengths. Hence M is inde-
pendent of D.

Let S be the intersection of DE and
the circumcircle of 4ABC. We show
that S is independent of D. As S and M lie on the circumcircle of 4ABC,
we have ∠AMD = ∠ASD = ∠ASE. As E is the reflection of A in DM ,
we now see that ∠AME = 2∠AMD = 2∠ASE.
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Consider the circle with centre M passing through A. As E is the reflection
of A in DM , we have |MA| = |ME|, so this circle also passes through E.
By the inscribed angle theorem, from ∠AME = 2∠ASE it follows that S
is also on this circle. Therefore S is the second intersection point of the
circumcircle of 4ABC and the circle with centre M passing through A.
This is a description of S independent of D. As DE passes through S, the
point S is the point required. �

3. Substituting x = y = 1 yields f(−2f(1)) = −1. Substituting x = n and
y = 1 yields f(−f(n)− f(1)) = −n. Substituting x = −f(n)− f(1) and
y = −2f(1) then yields

f
(
−f(−f(n)− f(1))− f(−2f(1))

)
= 1− (−f(n)− f(1))− (−2f(1))

in which the left hand side expands as f(−(−n)− (−1)) = f(n+ 1) and
the right hand as 1 + f(n) + f(1) + 2f(1) = f(n) + 3f(1) + 1. Writing
c = 3f(1) + 1, we then get f(n+ 1) = f(n) + c.

Applying induction in both directions, we see that f(n+ k) = f(n) + ck
for all k ∈ Z. Substituting n = 0 then yields f(k) = f(0) + ck for all k ∈ Z,
so f is a linear function.

Now let a, b ∈ Z be such that f(x) = ax + b for all x ∈ Z. Then the left
hand side of the functional equation evaluates as

f
(
−f(x)− f(y)

)
= a(−ax− b− ay − b) + b = −a2x− a2y − 2ab+ b.

For all x and y this must be equal to 1− x− y. Therefore the coefficient
for x on both sides must be equal (for fixed y both sides must give the
same function in x), so −a2 = −1, and therefore a = 1 or a = −1. If
a = −1, substituting x = y = 0 yields 2b + b = 1, which contradicts b
being an integer. If a = 1, substituting x = y = 0 yields −2b+ b = 1, so
b = −1. Indeed, if a = 1 and b = −1, then the left hand side also expands
to 1− x− y. Therefore the only solution to the functional equation is the
function f(x) = x− 1. �

4. We show that the largest m Merlijn can pick is min(n, 3(n− k) + 1). First
we show that m ≤ min(n, 3(n − k) + 1). If Merlijn asks for n + 1 tiles,
Julian can instruct Merlijn to place them all horizontally. As n ≤ 2k − 1,
it is impossible to place more than one tile horizontally on a single row, so
Merlijn would need at least n+ 1 rows, this is a contradiction. Therefore
m ≤ n.

Now suppose that Merlijn asks for 3(n−k)+2 tiles. Julian can now instruct
Merlijn to place n− k + 1 tiles vertically and 2n− 2k + 1 tiles horizontally.
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Note that vertical tiles always cover the k − (n− k) = 2k − n ≥ 1 rows in
the middle of the board. Therefore the vertical tiles together cover at least
n−k+1 squares in each of these rows in the middle of the board, leaving at
most k − 1 squares for the horizontal tiles. Therefore no horizontal tiles fit
in these middle rows, and the 2n− 2k + 1 horizontal tiles need to fit in the
remaining n− (2k − n) = 2n− 2k rows. This is a contradiction. Therefore
we must have m ≤ 3(n− k) + 1. It follows that m ≤ min(n, 3(n− k) + 1).

Now we show that it is always possible to place a pile of min(n, 3(n+k)+1)
tiles on the board. We first consider two special configurations. Put n− k
horizontal tiles into a (n− k)× k-rectangle at the bottom left. To the right
of that, we can fit n− k more vertical tiles into a k × (n− k)-rectangle in
the bottom right. Above that rectangle, we can fit n− k more horizontal
tiles into a (n − k) × k-rectangle in the top right. Finally, to the left of
that, we can fit n− k more vertical tiles into a k × (n− k)-rectangle in the
top left. In this way, we can fit 2(n− k) horizontal and 2(n− k) vertical
tiles on the board.

One other way to cover the board is as follows. Place n vertical tiles in
the top left, covering a k × n-rectangle. Below that there is room for n− k
horizontal tiles to fit in an (n− k)× k-rectangle. In this way, we can fit n
vertical and n− k horizontal tiles on the board.

n− k

k

n− k

k

Suppose that Merlijn receives A horizontal tiles and B vertical tiles from
Julian. Then we have A + B ≤ n and A + B ≤ 3(n − k) + 1. Without
loss of generality we assume that A ≤ B. If A ≤ n − k, then Merlijn
uses the second special configuration, omitting tiles he doesn’t have. As
B ≤ n, this works. Else, A ≥ n − k + 1, so B ≤ 3(n − k) + 1 − A ≤
3(n−k) + 1− (n−k+ 1) = 2(n−k). As A ≤ B, we also have A ≤ 2(n−k),
and Merlijn can use the first configuration, omitting tiles he doesn’t have.
Therefore it is always possible for Merlijn to place min(n, 3(n− k) + 1) tiles
on the board. �

35



Junior Mathematical Olympiad, September 2019

Problems

Part 1

1. At a conference, there were participants from four countries: the Nether-
lands, Belgium, Germany, and France. There were three times as many
participants from the Netherlands as there were Belgians, and three times
as many Germans as French. Five of the participants counted the total
number of participants (including themselves). They counted 366, 367, 368,
369, and 370 participants, respectively. Only one of them got the right
answer.
What is the the correct number of participants?

A) 366 B) 367 C) 368 D) 369 E) 370

2. We completely cover a big isosceles triangle
with triangles that are similar to the big tri-
angle as in the figure on the right.
What part of the area of the big triangle is
covered by the top triangle (indicated in grey)?

A) 1
4 B) 2

7 C) 5
16 D) 16

49 E) 1
3

3. In the puzzle below, a, b, c, d, and e are nonzero digits such that the two
calculations are correct. The digits need not be distinct.
How many solutions are there for which a < b?

ab× ab = cde and ba× ba = edc.

A) 1 B) 2 C) 3 D) 4 E) 5

4. We say that a number is a child of another number if we can get it by
placing between any two digits of the other number either nothing, a +, or
a ×. For example, 145 and 5 are children of 12121 because 145 = 12×12+1
and 5 = 1 + 2× 1 + 2× 1. The number 15 is both a child of 12121 and of
33333, because 12 + 1 + 2× 1 = 15 = 3 + 3 + 3 + 3 + 3.
Which of the following numbers is also a child of both 12121 and 33333?

A) 18 B) 34 C) 39 D) 42 E) 45
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5. In a class, 30 students did a test. Every student got a grade that was an
integer from 1 to 10. The grade 8 was given more often than any of the
other grades.
What is the smallest possible average grade of the students?

A) 3 8
15 B) 3 2

3 C) 3 5
6 D) 4 11

30 E) 4 8
15

6. We want to colour the 36 squares of a 6× 6 board. Every square must be
coloured white, grey, or black, and the following requirement must be met:

Three adjacent squares in the same row or column, must always have
three different colours.

We say that two colourings are truly different if you cannot get one from
the other by rotating the board. Below, you can see three colourings that
meet the requirement. The first and second colouring are truly different,
but the third is the same as the second after rotating.

How many truly different colourings meet the requirement (including the
two from the figure)?

A) 2 B) 3 C) 4 D) 6 E) 12

7. Point D lies on side BC of triangle ABC. Angle A in triangle ABD is
equal to angle C in triangle ABC, and angle A in triangle ACD is equal
to angle B in triangle ABC.

The given information is not enough to derive the exact shape of triangle
ABC. However, you can still derive that one of the given statements below
is always false. Which statement is it?
By |AB| we denote the length of line segment AB.

A) |AD| < |AC| D) |AD|×|CD| < |AB|×|AC|
B) |AC| < |AB| E) |AB|×|AC| < |AD|×|BC|
C) |AB| < |BC|

8. Five smart students are sitting in a circle. The teacher gives one or more
marbles to each of them. He explains that he has handed out a total of
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18 marbles, and that everyone got a different number of marbles. Each
student is allowed to see his own number of marbles, as well as the number
of marbles of his neighbour on the left and his neighbour on the right.

Using only this information, each student must try to logically deduce the
difference between the numbers of marbles of the two students opposite to
him. The teacher has distributed the marbles in such a way as to minimise
the number of students that are able to do this. How many students can
do it?

A) 0 B) 1 C) 2 D) 3 E) 5

Part 2

1. We compute the square of each of the numbers from 1 to 2019. We take
the last digit from each of the resulting squares, and then we add those
2019 digits together.
What number do we get?

2. The numbers abcd and dcba consist of the same four digits a, b, c, and d,
but in opposite orders. When we add the two numbers, we get 13552.
Determine a+ b+ c+ d.

3. One hundred students wear shirts numbered from 1 to 100. The students
are arranged in a square of ten rows by ten columns. It turns out that
adding the ten shirt numbers of the students in any row or any column
always yields the same outcome.
Determine that outcome.

4. The four points A, B, C, and D lie on a common line (in this order). There
is a point T not on the line such that |AB| = |BT | and |CD| = |CT |. Also,
angle T of triangle BTC is 54 degrees. In the figure you can see a sketch
of the situation; angles and sizes are not necessarily accurate.
Determine angle T of triangle ATD.

B C

T

54◦

DA
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5. Mieke has a stack of 21 cards. Mieke repeats the following operation:

She takes the top two cards from the stack, changes their order, and
then puts them at the bottom of the stack (so the top card becomes
the bottom card).

Mieke repeats this operation until the cards are back in their original order.
How many times does Mieke perform the operation?

6. The number
2222 9393 · · · 93︸ ︷︷ ︸

100 times 93

919

is divided by 2019.
Determine the sum of the digits of the resulting number.

7. On a white strip that is 100 mm long and 10 mm wide, ten black squares
are drawn that, from left to right, have sides of length 1, 2, . . . , 10 mm. The
centre of each black square is in the middle of the strip and 5, 15, . . . , 95
mm from the start (left edge) of the strip.

A transparent square is moving along the strip from left to right (indicated
in grey). In the figure, two possible positions of the transparent square are
depicted: in the first, its left edge is 21 mm from the start of the strip, and
in the second, it is 54 mm from the start of the strip. In both cases, less
than half of the part underneath the square is coloured black (only 9% in
the first case). There is one position in which exactly half of the part of
the strip underneath the square is coloured black.
Determine, for that position, how far the left edge of the square is from
the start of the strip.
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8. We are given a triangle with an additional two points on each side. So in
total, there are nine points (see figure).

We want to choose three of the nine points that are not on one line. For
example, we could choose (1) the three vertices of the triangle, or (2) the
left vertex and the two additional points on the opposite side.
How many possible choices are there in total, including the two examples
given?

Answers

Part 1

1. C) 368 5. B) 3 2
3

2. D) 16
49 6. B) 3

3. B) 2 7. E) |AB|×|AC| < |AD|×|BC|

4. D) 42 8. D) 3

Part 2

1. 9090 5. 110

2. 26 6. 103

3. 505 7. 61 1
8 mm

4. 117 graden 8. 72
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