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Introduction

The selection process for IMO 2017 started with the first round in January
2016, held at the participating schools. The paper consisted of eight multiple
choice questions and four open questions, to be solved within 2 hours. In
this first round 11101 students from 347 secondary schools participated.

The 1017 best students were invited to the second round, which was held in
March at twelve universities in the country. This round contained five open
questions, and two problems for which the students had to give extensive
solutions and proofs. The contest lasted 2.5 hours.

The 122 best students were invited to the final round. Also some outstanding
participants in the Kangaroo math contest or the Pythagoras Olympiad
were invited. In total about 150 students were invited. They also received
an invitation to some training sessions at the universities, in order to prepare
them for their participation in the final round.

The final round in September contained five problems for which the students
had to give extensive solutions and proofs. They were allowed 3 hours for
this round. After the prizes had been awarded in the beginning of November,
the Dutch Mathematical Olympiad concluded its 55th edition 2016.

The 33 most outstanding candidates of the Dutch Mathematical Olympiad
2016 were invited to an intensive seven-month training programme. The
students met twice for a three-day training camp, three times for a single
day, and finally for a six-day training camp in the beginning of June. Also,
they worked on weekly problem sets under supervision of a personal trainer.

In February a team of four girls was chosen from the training group to
represent the Netherlands at the EGMO in Ziirich, Switzerland, from 6
until 12 April. The team brought home a silver medal, a bronze medal,
and a honourable mention; a very nice achievement. For more information
about the EGMO (including the 2017 paper), see www.egmo.org.

In March a selection test of three and a half hours was held to determine the
ten students participating in the Benelux Mathematical Olympiad (BxMO),
held in Namur, Belgium, from 5 until 7 May. The Dutch team received
two gold medals, three silver medals and four bronze medals, and managed
to get the highest total score. For more information about the BxMO
(including the 2017 paper), see www.bxmo.org.



In June the team for the International Mathematical Olympiad 2017 was
selected by three team selection tests on 1, 2 and 3 June 2017, each lasting
four hours. A seventh, young, promising student was selected to accompany
the team to the IMO as an observer C. The team had a training camp in
Rio de Janeiro, from 8 until 15 July.

For younger students the Junior Mathematical Olympiad was held in Oc-
tober 2016 at the VU University Amsterdam. The students invited to
participate in this event were the 100 best students of grade 2 and grade 3
of the popular Kangaroo math contest. The competition consisted of two
one-hour parts, one with eight multiple choice questions and one with eight
open questions. The goal of this Junior Mathematical Olympiad is to scout
talent and to stimulate them to participate in the first round of the Dutch
Mathematical Olympiad.

We are grateful to Jinbi Jin and Raymond van Bommel for the composition
of this booklet and the translation into English of most of the problems and
the solutions.



Dutch delegation

The Dutch team for IMO 2017 in Brazil consists of

e Nils van de Berg (17 years old)

— bronze medal at BxMO 2017
Wietze Koops (16 years old)

— bronze medal at BxMO 2016, gold medal at BxMO 2017
— honourable mention at IMO 2016

Matthijs van der Poel (16 years old)

— bronze medal at BxMO 2016, bronze medal at BxMO 2017
— observer C at IMO 2016

Levi van de Pol (15 years old)

— silver medal at BxMO 2015, silver medal at BxMO 2016
— observer C at IMO 2015, bronze medal at IMO 2016

Ward van der Schoot (18 years old)

— bronze medal at BxMO 2017
Gabriel Visser (19 years old)

— bronze medal at BxMO 2016
— bronze medal at IMO 2016

We bring as observer C the promising young student

e Lammert Westerdijk (16 years old)

— participated in BxMO 2017

The team is coached by

e Quintijn Puite (team leader), Eindhoven University of Technology
e Birgit van Dalen (deputy leader), Leiden University
o Jetze Zoethout (observer B), Utrecht University



First Round, January 2016

Problems

A-problems

. Frank has two integers that add up to 26. Kees adds two more integers to
it and gets 41. Pieter adds another two integers and gets 58.
At least how many of the six integers that were added up are even?

A) 0 B) 1 )2 D) 3 E) 4

. In a square with side length 12, line segments are drawn
between the vertices and the midpoints of the sides and
between the midpoints of opposite sides (see the figure).
In this way, a star shaped figure is created.

What is the area of this figure?

A) 12 B) 16 C) 20 D) 36 E) 48

. A positive integer is called fully divisible if it is divisible by each of its digits.
Moreover, these digits must all be distinct (and nonzero). For example, 162
is fully divisible, because it is divisible by 1, 6, and 2.
How many fully divisible two-digit integers are there?

A) 4 B)5 C)6 D) 7 E) 8

. An eight is a figure consisting of two equal circles touch-
ing each other, like ©, © or &. In the figure you see 66
circles stacked in the shape of a triangle.

How many eights can you find in this stack?

A) 99 B)108  C)120 D) 135  E) 165

. Five integers are written around a circle. Two neighbouring numbers never
add up to a multiple of three. Also, a number and its two neighbours never
add up to a multiple of three.

How many of the five integers are multiples of three?

A)l B) 2 C)3 D) 4 E) 2 and 3 are both possible



6. In the figure you see a wire-frame model of a 2x2x2-cube
consisting of 8 small cubes with side length 1 dm. This
figure uses 54 dm of wire.

How many dm of wire are needed for a wire-frame model
of a 10x 10 x 10-cube consisting of one thousand small
cubes with side length 1 dm?

A)121  B)1000 C)1210 D) 3000 E) 3630

7. A square board is divided into 4 x4 squares. At the start, all squares are
white. Now, we want to colour some of the squares blue, in such a way
that each blue square will be adjacent to exactly one white square (two
squares are called adjacent if they have a side in common).

What is the maximum number of squares that we can colour blue?

A) 6 B) 8 C) 10 D) 12 E) 14

8. For three distinct positive integers a, b, and ¢ we have a + 2b + 3¢ < 12.
Which of the following inequalities is certainly satisfied?

A)3a+2b+c¢<17 Bla+b+e<7 Qa—-b+c<4
D)b+c—a<3 E)3b+3c—a<6
B-problems

The answer to each B-problem is a number.

1. We construct a list of all positive integers that divide 707070. The numbers
are listed in decreasing order. The first number in the list is therefore
707070 and the last one is 1.

What is the seventh number in the list?

2. In the AO-language all words consist of only A’s and O’s and every possible
sequence of A’s and O’s is a word. There are, for example, eight three letter
words: ‘O00’, ‘O0A’, ‘OAO’,..., ‘AAO’, and ‘AAA’. Words that contain
the letter combinations ‘AO’ and ‘OA’ equally often are called special. For
example, ‘AOAAOOOAA’ is special, because the word contains both letter
combinations ‘AO’ and ‘OA’ twice.

Find a special word consisting of four A’s and four O’s with the additional
property that after removing any of its letters, the resulting seven letter
word is again special.



3. In the square ABCD lies a point U such that BU T
and AB have the same length. Point V is the
intersection of BU and the diagonal AC. The size .
of angle DAU is 28 degrees.

What is the size of the angle at V' in triangle BV C?

289

4. Seven people are suspects of a theft:
- Alex, a brown-haired man with blue eyes;
- Boris, a blond man with green eyes;
- Chris, a blond man with brown eyes;
- Denise, a blond woman with brown eyes;
- Eva, a brown-haired woman with blue eyes;
- Felix, a brown-haired man with brown eyes;
- Gaby, a blond woman with blue eyes.

Detectives Helga, Ingrid, and Julius know that one of the suspects is the
thief. After conducting some investigations they share their information.

Helga: “I know the eye and hair colour of the thief, but I do not know
who the thief is.”
Ingrid did not hear Helga and says:
“I know the hair colour and the gender, but I do not know who
the thief is.”
At last, Julius says:
“First I knew only the gender of the thief, but after hearing you
I know who the thief is.”

The detectives spoke the truth. Who is the thief?



Solutions

A-problems

1. Q)2 5. B)2

2. D) 36 6. E) 3630

3. B)5 7. D)12

4. E) 165 8. D)b+c—a<3
B-problems

1. 70707

2. ‘AAOOOOAA’ (or ‘OOAAAAOO’)

3. 101°

4. Denise



B1.

B2.

B3.

B4.

Second Round, March 2016

Problems

B-problems

The answer to each B-problem is a number.

How many of the integers from 10 to 99 have the property that the number
equals four times the sum of its two digits?

In a box there are 100 cards that are numbered from 1 to 100. The numbers
are written on the cards. While being blindfolded, Lisa is going to draw
one or more cards from the box. After that, she will multiply together the
numbers on these cards.

Lisa wants the outcome of the multiplication to be divisible by 6. How
many cards does she need to draw to make sure that this will happen?

D C

In the trapezium ABCD the sides AB and CD are
parallel and we have |[BC| = |CD| = |DA| = £|ABJ. On
the exterior of side AB there is an equilateral triangle A4 B
BAP. The point @ is the intersection of PC' and AB,

and R is the intersection of PD and AB (see the figure).

The area of triangle BAP is 12.

Determine the area of quadrilateral QCDR.

p
At championships of ‘The Settlers of Catan’, three participants play against
each other in each game. At a certain championship, three of the parti-
cipants were girls and they played against each other in the first game.
Each pair of participants met each other in exactly one game and in each
game at least one girl was playing.

What is the maximum number of participants that could have competed in
the championship?



B5.

C1.

C2.

Triangle ABC' has a right angle at B. Moreover,
the side length of AB is 1 and the side length of
BC is 2. On the side BC' there are two points
D and FE such that F lies between C' and D and

DEFG is a square, where F' lies on AC and G 1 q
lies on the circle through B with centre A. ‘ ||
Determine the length of DE. B D _E

C—problems For the C-problems not only the answer is important; you also have to

describe the way you solved the problem.

A positive integer is called 2016-invariant if the sum of its digits does
not change when you add 2016 to the integer. For example, the integer
8312 is 2016-invariant: the sum of the digits of 8312 is 8+3+ 1+ 2 = 14,
and this equals the sum of the digits of 8312 4+ 2016 = 10328, which is
1+0+3+2+8=14.

(a) Determine the largest four-digit number that is 2016-invariant.

(b) There are 9999 positive integers having at most four digits.
Determine how many of these are 2016-invariant.

For the upcoming exam, the desks in a hall are arranged in n rows containing
m desks each. We know that m > 3 and n > 3. Each of the desks is occupied
by a student. Students who are seated directly next to each other, in front
of each other, or diagonally from each other, are called neighbours. Thus,
students in the middle of the hall have 8 neighbours. Before the start of
the exam, each student shakes hands once with each of their neighbours.
In total, there are 1020 handshakes.

Determine the number of students.



C1.

Solutions

B-problems
1. 1

2. 68

3. 5

4. 7

5. 2
C-problems

When adding two integers, we write one on top of the other and then add
the digits from right to left. If at a certain position the sum of the two
digits is greater than 9, a carry occurs at this position: we must carry a 1
to the addition of the two digits in the next position (the position to the
left).

Let n be a number whose sum of digits equals s. Now consider the
number n + 2016. We can derive the sum of its digits from the addition
procedure. If no carry occurs, then the sum of the digits of n + 2016 equals
s+24+1+4+6=s+9. If carries do occur, then with each carry the sum
of the digits decreases by 9. After all, if two digits  and y add up to a
number greater than 9, the digit below these two will be z + y — 10 instead
of x + y, while we carry a 1 causing the digit to the left to increase by 1.
In total, the sum of the digits thus decreases by 9 for each carry.

For example, taking n = 1015 (and s =1+ 0+ 1+5=7), then there will
be one carry in the addition n + 2016 = 3031. For the sum of the digits we
have3+0+3+1=(s+9)—1-9.

As another example, take n = 3084 (where s = 15). Then, there will be two
carries in the addition n + 2016 = 5100 and indeed we have 5+14+0+0 =
(s+9)—2-9.

Hence, a number is 2016-invariant if and only if exactly one carry occurs
when adding 2016 to it.

10



(a) After all observations in the previous paragraph, we conclude that

we are looking for the greatest four-digit number having the property
that you need to carry exactly one 1 when adding 2016 to it. This
number is 9983. In the addition 9983 + 2016 exactly one carry occurs
and if you raise one of the digits 8 or 3, a second carry occurs.

To count how many of the numbers n from 1 to 9999 give exactly
one carry when adding 2016 to it, we consider four cases according to
the position in which the carry occurs. In each case we consider the
possible values of the digits of n.

e First, consider the case that the only carry occurs in the thousands

place. The thousands digit must then be either 8 or 9. The unit
digit can only be 0, 1, 2, or 3. The tens digit can be any digit
except for 9 (because 1+ 9 would give a carry in the tens place).
The hundreds digit can be any value. Hence, in total there are
2-10-9-4 = 720 numbers in this case.

There are no numbers for which a carry occurs only in the hundreds
place (a carry there can only occur if we also carry a 1 from the
tens place).

Next, consider the case that the only carry occurs in the tens
place. For the units digit, the only possible values are 0, 1, 2,
and 3. The tens digit must be a 9. Because you now need to
carry a 1 from the tens place to the hundreds place, the digit in
the hundreds place cannot be a 9 anymore since this would cause
another carry (for example, in the addition 990 + 2016). The digit
in the thousands place can take all values except 8 and 9. Hence,
in total there are 8 -9 -1 -4 = 288 numbers in this case.

Finally, consider the case that the only carry occurs in the units
place. For this digit, the possible values are 4, 5, 6, 7, 8, and 9.
The digit in the tens place cannot be 9 or 8, because then another
carry would occur (for example in 84 + 2016). The hundreds digit
can be any value and the thousands digit can be any value except
8 and 9. Hence, in total we find 8 - 10 - 8 - 6 = 3840 numbers in
this case.

Altogether, there are 720 + 288 + 3840 = 4848 numbers from 1 to 9999
that are 2016-invariant.

11



C2. There are four students seated in the corners, since n,m > 2. They each
shook the hand of three other people. Not counting the students in the
corners, there are m — 2 students who are seated completely in the front,
m — 2 who are seated in the back, n — 2 students who are seated in the
leftmost row and 17— 2 in the rightmost row. These 2n+2m —8 students each
shook the hand of five other people. The remaining mn—4—(2n+2m—8) =
mn — 2n — 2m + 4 students each shook the hand of eight other people.
Adding the numbers of handshakes for each of the students gives a total of

4-3+(2n+2m—8)-5+ (mn—2n—2m+4) -8 =8mn — 6n — 6m + 4.

This number is exactly twice the number of handshakes, because each
handshake involves two students. Hence, we see that 8mn — 6n — 6m +4 =
2040, or 16mn — 12n — 12m = 4072. We can rewrite this equation as

(4m — 3) - (4n — 3) = 4081.

The integers 4m — 3 and 4n — 3 both have remainder 1 when dividing by 4.
Also, 4m — 3 and 4n — 3 must both be greater than 1. If we look at the
prime factorisation 4081 = 7 - 11 - 53, then we see that there is only one
way to write 4081 as the product of two integers greater than 1 that each
have remainder 1 when dividing by 4: namely as 4081 = 77 - 53. Hence, we
find 4m — 3 = 77 and 4n — 3 = 53 (or the other way around). It follows
that m = 20 and n = 14 (or the other way around). In both cases we see
that the total number of students equals 20 - 14 = 280.

12



Final Round, September 2016

Problems

1. (a) On a long pavement, a sequence of 999 integers is written in chalk.
The numbers need not be in increasing order and need not be distinct.
Merlijn encircles 500 of the numbers with red chalk. From left to right,
the numbers circled in red are precisely the numbers 1,2, 3, ...,499, 500.
Next, Jeroen encircles 500 of the numbers with blue chalk. From
left to right, the numbers circled in blue are precisely the numbers
500,499,498, ...,2, 1.
Prove that the middle number in the sequence of 999 numbers is
circled both in red and in blue.

(b) Merlijn and Jeroen cross the street and find another sequence of 999
integers on the pavement. Again Merlijn circles 500 of the numbers
with red chalk. Again the numbers circled in red are precisely the
numbers 1,2,3,...,499,500 from left to right. Now Jeroen circles
500 of the numbers, not necessarily the same as Merlijn, with green
chalk. The numbers circled in green are also precisely the numbers
1,2,3,...,499,500 from left to right.

Prove: there is a number that is circled both in red and in green that
is not the middle number of the sequence of 999 numbers.

2. For an integer n > 1 we consider sequences of 2n numbers, each equal to 0,
-1 or 1. The sum product value of such a sequence is calculated by first
multiplying each pair of numbers from the sequence, and then adding all
the results together.

For example, if we take n = 2 and the sequence 0,1,1, -1, then we find the
products 0-1, 0-1, 0--1, 1-1, 1.--1, 1.-1. Adding these six results
gives the sum product value of this sequence: 04+0+0+1+(-1)+(-1) = -1.
The sum product value of this sequence is therefore smaller than the sum
product value of the sequence 0,0, 0,0, which equals 0.

Determine for each integer n > 1 the smallest sum product value that such
a sequence of 2n numbers could have.

Attention: you are required to prove that a smaller sum product value is
impossible.

13



3. Find all possible triples (a,b,c) of positive integers with the following
properties:

e gcd(a,b) = ged(a, ¢) = ged(b, ¢) = 1;
e ¢ is a divisor of a + b + ¢;
e b is a divisor of a + b + c¢;
e cis a divisor of a + b+ c.

(Here ged(x,y) is the greatest common divisor of z and y.)

4. Version for junior students

In a quadrilateral ABCD the intersection of the
diagonals is called P. Point X is the orthocentre
of triangle PAB. (The orthocentre of a triangle is
the point where the three altitudes of the triangle
intersect.) Point Y is the orthocentre of triangle
PCD. Suppose that X lies inside triangle PAB
and Y lies inside triangle PCD. Moreover, sup-
pose that P is the midpoint of line segment XY'.
Prove that ABC'D is a parallelogram.

4. Version for senior students c
In the acute triangle ABC|, the midpoint of side Ny
BC is called M. Point X lies on the angle bi-

sector of ZAM B such that ZBX M = 90°. Point (‘b B

Y lies on the angle bisector of ZAMC' such that
/ZCY M = 90°. Line segments AM and XY in-
tersect in point Z.

Prove that Z is the midpoint of XY

5. Bas has coloured each of the positive integers. He had several colours at
his disposal. His colouring satisfies the following requirements:

e cach odd integer is coloured blue;
e each integer n has the same colour as 4n;

e cach integer n has the same colour as at least one of the integers n + 2
and n + 4.

Prove that Bas has coloured all integers blue.

14



Solutions

1. (a) For brevity, we will say that a number encircled in red is a red number,
and similarly for blue. So some numbers could be both red and blue.
Since there are 999 numbers written on the pavement, of which 500
are red and 500 are blue, we have at least one bicoloured number
by the pigeonhole principle. Consider such a bicoloured number and
suppose it is the number k. From left to right, the red numbers form
the sequence 1,2, ...,500. Hence, to the left of the bicoloured number
we have the red numbers 1 to k£ — 1, and to the right we have the red
numbers k + 1 to 500. The blue numbers are written in the opposite
order: from left to right they form the sequence 500,499,...,1. To
the left of the bicoloured number we therefore have the blue numbers
k + 1 to 500, and to the right we have the blue numbers 1 to k — 1.

We count how many numbers there are on each side of the bicoloured
number. On the left we have the red numbers 1 to kK — 1 and the blue
numbers k + 1 to 500. Hence, there are at least 499 distinct numbers
on the left. On the right we have the red numbers k£ + 1 to 500 and
the blue numbers 1 to k — 1. Again at least 499 distinct numbers.
Since there are only 999 = 499 4+ 1 + 499 numbers on the pavement, we
have already considered all numbers on the pavement. We conclude
that there are precisely 499 numbers on each side of the bicoloured
number. The bicoloured number is therefore precisely in the middle
of the sequence.

(b) Just as in part (a), the pigeonhole principle yields that at least one
number is bicoloured, i.e. both red and green. If more than one number
is bicoloured, one of them is not exactly in the middle of the sequence
and we are done. Therefore, it suffices to examine the case where
there is exactly one bicoloured number. Let this number be k.

Again, we count how many numbers there are on each side of the
bicoloured number. On the left we have the red numbers 1 to k — 1
and the green numbers 1 to k — 1. Since none of these numbers is
bicoloured, there are at least 2 - (k — 1) distinct numbers on the left.
On the right we have the red numbers k + 1 to 500 and the green
numbers k + 1 to 500. Since none of these numbers is bicoloured,
we have at least 2 - (500 — k) distinct numbers on the right. Since
2-(k=1)+1+42-(500—k) = 999, we have already counted all numbers.
On the left of the bicoloured number we therefore have exactly 2-(k—1)
numbers, and on the right we have exactly 2- (500 — k) numbers. Since
2 (k —1) is an even number, it is unequal to 499. We conclude that
the bicoloured number is not exactly in the middle of the sequence.

15



2. Suppose that our sequence has x ones, y minus ones (and hence 2n — z —
y zeroes). We calculate the sum product value of the sequence (as an
expression in z and y).

In the sum product value, six different types of terms occur: 1-1, 1-—1,
—1--1,1-0, —=1-0, and 0-0. Only the first three types contribute since
the other types are equal to 0.

The number of terms of the type 1-1 = 1 equals the number of ways to
select two out of x ones. This can be done in % ways: there are x
options for the first 1, and then x — 1 options for the second 1. Since the
order in which we select the two ones does not matter, we effectively count
each possible pair twice.

. 1 y(y—1)
Similarly, the number of terms of the type —1- —1 =1 is equal to £¥5—.

The number of terms of the type 1 - —1 = —1 is equal to xy, since there
are x options for choosing a 1 and, independently, there are y options for
choosing a —1.

In total, we obtain a sum product value of

30(332— 1) 14 y(y2— 1)

— N2 —
Ay 1= (z —y) . (+y)

S:

Since (z — y)? > 0 (squares are non-negative) and —(x +y) > —2n (there
are only 2n numbers in the sequence), we see that S > % = —n. So the
sum product value cannot be smaller than —n. If we now choose x = y = n,
then (z —y)? =0 and —x — y = —2n, which imply a sum product value of

exactly % = —n. Hence, the smallest possible sum product value is —n.

3. The problem is symmetric in a, b, and c. That is, if we consistently swap a
and b, or a and ¢, or b and ¢, then the conditions on (a,b,c¢) do not change.
We will therefore consider solutions for which a < b < ¢. The remaining
solutions are then found by permuting the values of a, b, and c.

Since a and b are positive, we see that a+b+c > c. Since c is largest among
the three numbers, we also have a + b + ¢ < 3c. Since we are given that
a+ b+ c is a multiple of ¢, we are left with two possibilities: a + b+ ¢ = 2¢
or a + b+ ¢ = 3c. We consider both cases separately. If a + b+ ¢ = 3¢,
then a, b, and ¢ must all be equal, because otherwise, the fact that a,b < ¢
implies that a +b+ ¢ < 3¢. This means that ged(b, ¢) = ged(e, ¢) = ¢. Since
ged(b, ¢) must be equal to 1, we find (a,b,¢) = (1,1,1). This is indeed a
solution, since ged(1,1) =1 and 1 is a divisor of 1 + 1 + 1.

16



If a+ b+ c = 2¢c, then ¢ = a4+ b. We know that b must be a divisor of
a+b+c=2a-+2b. Since a > 0, we have 2a + 2b > 2b. Since b > a, we
also have 2a + 2b < 4b. Therefore, since 2a + 2b must be a multiple of b,
there are only two possibilities: 2a + 2b = 3b or 2a + 2b = 4b. Again, we
consider these cases separately.

If 2a + 2b = 3b, then b = 2a. Similarly to the first case, we find that
a = ged(a, 2a) = ged(a,b) = 1. Therefore, b =2 and ¢ = a+ b = 3. The
resulting triple (a,b,c¢) = (1,2,3) is indeed a solution, since ged(1,2) =
ged(1,3) = ged(2,3) =1 and 1+ 24 3 = 6 is divisible by 1, 2, and 3.

If 2a+2b = 4b, then a = b. Again we see that a = ged(a, a) = ged(a,b) = 1.
From b = a =1 it follows that ¢ = a + b = 2 and hence (a,b,¢) = (1,1,2).
This is indeed a solution since ged(1,1) =ged(1,2) =land 1+1+2=4
is divisible by 1 and 2.

We conclude that the solutions for which a < b < ¢ holds are: (a,b,c) =
(1,1,1), (a,b,¢) = (1,1,2), and (a,b,c) = (1,2,3). Permuting the values of
a, b and ¢, we obtain a total of ten solutions (a, b, ¢):

(17171)a (171a2)7 (17271)’ (25171)a

(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).

. Version for junior students

Let K be the intersection of AX and BD,

and let L be the intersection of C'Y and BD.
Consider the triangles PLY and PKX.
The angles ZPLY and /PKX are both

right angles. The angles /Y PL and ZXPK
are opposite angles and therefore equal.

Since |PX| = |PY|, we see that the tri-

angles PK X and PLY are congruent (SAA). SR

Hence, we have |PK| = |PL]|. B

Now consider triangles PAK and PCL. Angles ZAK P and ZCLP are both
right angles. Angles ZKPA and ZLPC are opposite angles, hence equal.
We have already shown that |PK| = |PL|. Therefore, triangles PAK and
PCL are congruent (ASA). From this, we conclude that |[AP| = |PC]|.

In a similar fashion, we may deduce that |BP| = |DP|. The two diagonals
of ABC'D bisect each other, hence ABCD is a parallelogram.
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4. Version for senior students
We start by observing that we have that ZCMY = %ACMA = %(180O -
/ZAMB) =90° — ZXMB. Since ZMX B = 90°, and the angles of triangle
BMX sum to 180°, we see that Z/CMY =90° — /XMB =/MBX.

Looking at triangles CMY and M BX, we observe that ZCMY = /M BX,
ZMYC = 90° = Z/BXM, and |CM| = |MB|. The two triangles are
therefore congruent (SAA). In particular, we obtain the equalities |M X| =
|CY| and |[MY| = |BX].

Now consider triangle XY M. We already know that |MY| = |BX| and
that /YMX = /YMA+ /AMX = 1/CMA+ L/AMB = 1 .180° =
90°. Since triangles XY M and M BX also share the side M X, they are
congruent (SAS).

In particular, we see that /ZMXY = ZXMB. Since MX is the angle
bisector of ZAM B, we have ZXMB = ZAM X. This implies that triangle
M X Z has two equal angles and is therefore an isosceles triangle with vertex
angle Z. We conclude that |[MZ| = | X Z|.

In a similar manner, we see that triangles XY M and CMY are congruent,
and find that /XYM = ZCMY = LY M A. Triangle MY Z is therefore
isosceles with vertex angle Z. This implies that |YZ| = |M Z|. Together
with |[MZ| = | X Z|, this concludes the proof.

5. Suppose that not all numbers are coloured blue. Then, there must be a
number k that is not blue. We will use this to derive a contradiction.

Without loss of generality, we may assume that & is coloured red. Since all
odd numbers are blue, k must be even, say k = 2m for some integer m > 1.
From the second requirement, it follows that 8m is red as well. From the
third requirement, it now follows that at least one of the numbers 8m + 2
and 8m + 4 is red. However, 2m + 1 is odd and therefore blue, which by
the second requirement implies that 8m +4 =4 - (2m + 1) is blue as well.
So 8m + 2 must be red.

By the third requirement, 8m — 2 must be the same colour as 8m or 8m + 2.
Since both 8m and 8m + 2 are red, this implies that 8m — 2 must be red
as well. Since 8m and 8m — 2 are red, this implies (again by the third
requirement) that 8m — 4 is also red. The second requirement now implies
that (8m —4)/4 = 2m — 1 is also red. But that is impossible since 2m — 1
is odd, and therefore blue.

We conclude that the assumption that not all numbers are blue leads to a
contradiction. Therefore, all numbers must be blue.
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BxMQO Team Selection Test, March 2017

Problems

. Let n be an even positive integer. A sequence of n real numbers is called
complete if for every integer m with 1 < m < n either the sum of the first
m terms of the sum or the sum of the last m terms is integral. Determine
the minimum number of integers in a complete sequence of n numbers.

. A function f: Zs¢ — Z is given, which has the following properties:
(i) f(p) =1 for all prime numbers p,
(i) f(zy) =yf(x) +xf(y) for all z,y € Zo.

Determine the smallest n > 2016 satisfying f(n) = n.

. Let ABC be a triangle with ZA = 90° and let D be the orthogonal
projection of A onto BC. The midpoints of AD and AC are called F
and F, respectively. Let M be the circumcentre of ABEF. Prove that
AC | BM.

. A quadruple (a, b, ¢, d) of positive integers with a < b < ¢ < d is called good
if we can colour each integer red, blue, green or purple, in such a way that

e of each a consecutive integers at least one is coloured red;

e of each b consecutive integers at least one is coloured blue;

e of each ¢ consecutive integers at least one is coloured green;
e of each d consecutive integers at least one is coloured purple.

Determine all good quadruples with a = 2.

. Determine all pairs of prime numbers (p, ¢) such that p? + 5pq + 4¢? is the
square of an integer.
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Solutions

1. We will prove that the minimum number of integers in a complete sequence
is 2. First consider the case n = 2. Let a; and as be the numbers in
the sequence. Then either a; or ag is integral. Without loss of generality
assume a; is integral. Moreover, a1 + as is integral, hence also as is integral.
Therefore, the sequence contains at least two integers.

Now consider the case n > 2. Write n = 2k (because n is even) with
k > 2. Then either a; +as + ...+ ag or agy1 + ag+2 + ...+ agg is integral.
But, as the sum of both expressions is also integral, they are both integral.
Moreover, either a3 + a2 + ...+ ag—1 Or ax+2 + ag43 + ...+ agy is integral.
This yields that either ay or apy; is integral. Moreover, we know that aq
or agy is integral, and these do not coincide with ay or ax41 because k > 2.
Hence, at least two different numbers are integers.

Finally, we will show for each even integer n that it is possible to write a
complete sequence with exactly two integers. Again write n = 2k. If k is
odd, we take a; = a1 = 1 and all other terms equal to % The sum of
all numbers in the sequence is integral, hence it is sufficient to show that
the sum of the first or last m terms is integral for 1 < m < k; the cases in
which m > k follow directly. For odd m < k, the sum of the first m terms
is integral, for even m < k, the sum of the last m terms is integral.

If k is even, we take a; = a; = 1 and all other terms equal to % For
odd m < k, the sum of the first m terms is integral, and for even m < k,
the sum of the last m terms is integral. Moreover, the sum of all terms is

integral, hence the requirement is also met for m > k.

We conclude that the minimum number of integers in a complete sequence
of n numbers is 2. O

2. We will first prove that for prime numbers p and positive integers k we
have f(p*) = kp*~!. We will prove this using mathematical induction to k.
For k = 1, the statement becomes f(p) = 1, which is known to hold. Now,
let [ > 1 and suppose that we proved the statement for k£ = [. Consider
k =1+ 1. Then we apply the second property with = p and y = p:

FE=f@-P)=p -t +p- ) =p +p-1p" =1+ 1)p".

This finished the induction. Now we will prove that for distinct prime
numbers p1, pa, ..., pt and positive integers ai, as, ..., a; we have

f(p‘l"lpg‘zp?’):p{flpg‘zp?f(g—i—k%"‘+%)
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We will prove this by induction to ¢t. For ¢ = 1, this is exactly the formula
that we have just proven. Now, let r > 1 and suppose that the statement
is proved for ¢ = r. Then we apply the second property again:

fPps® - pir - pit)

Ap41 Apr41

:pllllng .. p?r . f (pT-‘rl ) _|_p7_+1 . ‘f(l')(lllpg’2 .. p?")

IS

_ a1, a . art1—1 a1 ai_a a a a a,
=Py’ Py arpp iy ~p11p22---p/~( +*§+"'+4)

P1 p Dr
_ @1,.02 Gy Ortl | Grgd aiaz o ardr+1l a1 a2 ar
PP Pr Pry1 pr+1+p1p2 Pr Priy (p1+p2+ +pr)

— pi1pl2  parp@rt1l a4 oaz 44 Gr 4 Grdd
_pl p2 p'r» pr+1 <p1 + P2 + + P + p7‘+1) .

This finishes the proof by induction.
For an integer n > 1 of the shape n = p{'ps?---py* with p; distinct and
prime, the equality f(n) = n is equivalent to

prps* - pt (g—; + o2t g—) =pi'ps’ - it

or

a4 Q2 4 oL % —
P1+P2+ +pt .

Multiplying this with pips - - - p; yields

a1p2p3 - - Pt + a2p1P3 - P+ ...+ @piP2 - Pr—1 = p1P2 - - - Pt-

Assume without loss of generality that p; is the smallest prime divisor of n.
In the expression above, p; is a divisor of the right hand side and of each
term in the left hand side except for the first term possibly. But then p;
must also be a divisor of the first term. As ps, ..., p¢ are all prime numbers
unequal to pp, this is only possible when p; | a;. In particular, we have
a1 > pi1, yielding Z—i > 1. We now see that equality must hold here, and
hence ¢t = 1, because the sum of the %* would otherwise be greater than 1.
Hence, n = pP for a certain prime number p.

Now we are searching for the smallest n > 2016 of the shape n = pP. As
33 = 27 and 5° = 3125, this smallest n is 3125. O

. Because of the right angles at A and D we have AADB ~ ACAB (AA).

. AD CA
This yields that ﬁ = ﬁ. Because |AE| = $|AD| and |CF| = 3|CA],
we also have that % = %. From the previous similarity, we also obtain

{BAFE = /BAD = /BCA = ZBCF'. Hence, using the (SAS) criterion,
we get AAEB ~ ACF B, from which we obtain ZABE = Z/CBF.
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Moreover, E'F is a mid-parallel in triangle ADC, hence EF || BC. There-
fore, we have ZCBF = ZBFE. Using the inscribed angle theorem and
the sum of the angles in the isosceles triangle EBM, we obtain /BFE =
%ABME =90° — ZEBM. Therefore, /ABE = /CBF =90° — ZEBM.
We conclude that ZABM = ZABE + ZEBM =90°, and AC || BM. O

. Each time, we only consider quadruples (a,b,c,d) of positive integers
satisfying a < b < ¢ < d. Each quadruple with b > 6 meets the requirements:
in this case, we can colour the even numbers red, and the odd numbers
consecutively blue, green, purple, blue, green, purple, et cetera. Moreover,
each quadruple with b > 4 and ¢ > 8 meets the requirements: in this
case, we can colour the even numbers red, the numbers 1 mod 4 blue, the
numbers 3 mod 8 green, and the numbers 7 mod 8 purple. We will prove
that these are the only possibilities.

Suppose that (2,b,¢,d) is good. We consider a purple number. Its neigh-
bours must be red, so then we have 3 consecutive numbers of which none is
coloured blue. Hence, b > 4. If b > 6, then the quadruple is good, as we’ve
just seen. Now suppose that either b =4 or b = 5. We were considering a
purple number with its two red neighbours. On at least one of both ends
there must be a blue number, say on the left side. Right left of this blue
number, there is another red number. So we got RBRPR. Of the next two
numbers in the sequence, there is at least one red one and at least one blue
one, so there is certainly no green one. In this way, we found 7 consecutive
numbers none of which is coloured green, hence ¢ > 8. We have already
seen that the quadruple is good in this case.

We conclude that the following quadruples (2,b, ¢, d) are good quadruples:
these with either b > 6, or with b > 4 and ¢ > 8. O

. Write p? + 5pq + 4¢*> = a?, for an integer a > 0. The left hand side
equals (p + 2q)? + pg, hence we can rewrite this to pqg = a? — (p + 2¢)?, or
pq = (a—p —2q)(a+ p+ 2q). The second factor on the right hand side
is greater than p and greater than ¢, but it is a divisor of pg. Because p
and ¢ are prime, it must be equal to pg, hence a + p + 2g = pq. Then,
we have a — p — 2¢g = 1. Subtracting these two equalities, we obtain
pg—1=(a+p+2q)—(a—p—2q) =2(p+2q),orpg—2p—4g—1=0.
This is equivalent to (p—4)(¢ —2) = 9. The factor ¢ — 2 cannot be negative,
hence also p — 4 is not negative. The factors must be equal to 1 and 9, or
to 9 and 1, or to 3 and 3. For (p, q), this yields the possibilities (5,11),
(13,3) and (7, 5), respectively. We can check that p? + 5pq + 4¢? is a square
in each of these cases, namely 282, 202 and 182, respectively. Therefore,
these three pairs are the solutions. (Il
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IMO Team Selection Test 1, June 2017

Problems

. Let n be a positive integer. Suppose that we have disks of radii 1,2,...,n.
Of each size there are two disks: a transparent one and an opaque one. In
every disk there is a small hole in the centre, with which we can stack the
disks using a vertical stick. We want to make stacks of disks that satisfy
the following conditions:

e Of each size exactly one disk lies in the stack.

e If we look at the stack from directly above, we can see the edges of all
of the n disks in the stack. (So if there is an opaque disk in the stack,
no smaller disks may lie beneath it.)

Determine the number of distinct stacks of disks satisfying these conditions.
(Two stacks are distinct if they do not use the same set of disks, or, if they
do use the same set of disks and the orders in which the disks occur are
different.)

. Let n > 4 be an integer. Consider a regular 2n-gon for which to every
vertex, an integer is assigned, which we call the value of said vertex. If four
distinct vertices of this 2n-gon form a rectangle, we say that the sum of
the values of these vertices is a rectangular sum.

Determine for which (not necessarily positive) integers m the integers
m+1,m+2,...,m+ 2n can be assigned to the vertices (in some order) in
such a way that every rectangular sum is a prime number. (Prime numbers
are positive by definition.)

. Determine all possible values of % + % if x and y are non-zero real numbers
satisfying z3 + 3 + 322y? = 2393,

. Let ABC be a triangle, let M be the midpoint of AB, and let N be the
midpoint of CM. Let X be a point satisfying both ZXMC = ZM BC and
/XCM = ZMCB such that X and B lie on opposite sides of CM. Let €
be the circumcircle of triangle AM X.

(a) Show that C'M is tangent to €.

(b) Show that the lines NX and AC intersect on €.
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Solutions

1. We say that a stack of disks is walid if it satisfies the conditions. Let a,
denote the number of valid stacks with n disks (of radii 1,2,...,n). We
show by induction on n that a,, = (n+1)!. For n = 1, we note that we can
make two distinct stacks, namely one with the transparent disk, and one
with the opaque one. So suppose that for some n > 1, we have shown that
an = (n+ 1)l. Consider a valid stack with n + 1 disks. If we remove the
disk with radius n + 1, the edge of every disk is still visible from directly
above, so we are left with a valid stack of n disks. Therefore, every valid
stack of n + 1 disks can be made by adding a disk of radius n + 1 to a valid
stack of n disks at some location. This can in principle be done in n + 1
ways: above the top disk, above the second highest disk, ..., above the
bottom disk, and under the bottom disk. The disk of radius n + 1 is always
visible, regardless of where in the stack it is inserted. If it is inserted under
the bottom disk, it may both be transparent or opaque, so there are 2a,,
valid stacks of n 4 1 disks in which the disk of radius n + 1 is the bottom
disk. If an opaque disk of radius n + 1 is inserted anywhere but under the
bottom disk, the disks below this opaque disk will now longer be visible.
So in the remaining n locations, we can only insert the transparant disk
of radius n + 1. Therefore there are na,, valid stacks in which the disk of
radius n + 1 is not the bottom disk. Hence

Gpt1 = 2ap, +na, = (n+2)a, = (n+2)(n+ 1) = (n+2)),

which completes the induction. (I

2. Number the vertices of the 2n-gon from 1 up to 2n, clockwise, and let a; be
the value of vertex . Since the number of vertices of the polygon is even,
we can pair each vertex to the one directly opposite to it. Sum the values
of each pair of opposite vertices to get the numbers s; = a; + ajyn-

If four vertices A, B, C, and D lie in that order on a rectangle, then
ZABC = 90° and ZADC = 90°, so B and D lie on the circle with
diameter AC by Thales’s theorem. As all vertices of the polygon lie on its
circumcircle, AC' is the diameter of this circumcircle. Therefore A and C
are opposite vertices, and the same holds for B and D. Conversely, if A and
C are opposite vertices, and so are B and D, then ABCD is a rectangle,
again by Thales’s theorem. In short, four vertices form a rectangle if and
only if they form two pairs of opposite vertices.

So the condition in the problem is equivalent to s; + s; being prime for
all 1 <7 < j < n. Suppose that at least three of the s; have the same
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parity, say s;, si, and s;. Then the sum of each pair of these three numbers
is even, but prime as well, so this sum must be 2 in all cases. Hence
5j 4 sk = Sk + 51 = s; + 5, from which follows that s; = s, = s;. Since
5 + s = 2, we have s; = s, = s, = 1. Therefore at most two of the s; are
even, and if three or more of the s; are odd, then the odd s; all equal 1.

The sum of all s; is equal to the sum of the values of the vertices, which is
(m+1)+(m+2)+- -+ (m+2n) = 2mn+1-2n-(2n+1) = 2mn+n(2n+1).

On the one hand, this sum is congruent to n modulo 2. On the other hand,
modulo 2 this sum must be congruent tot the number of odd s;. Hence
the number of odd s; has the same parity as n. As there are n of the s;, it
follows that the number of even s; is even. Since we have already seen that
the number of even s; is at most 2, it follows this number is either 0 or 2.

Suppose that n = 4 and and that there are two even s;. Then there are
also two odd s;. The sum of the even s;, as well as that of the odd s;, is
equal to 2, so the sum of the s; is equal to 4 = n. Now suppose that n > 5
and that there are two even s;. Then n —2 > 3 of the s; are odd, so all odd
s; are equal to 1. The sum of the two even s; is 2, so the sum of the s; is
equal to (n — 2) + 2 = n. Now suppose that there are no even s;. Then all
s; are odd, and therefore equal to 1, so again, the sum of the s; equals n.

So in all of the cases, the sum of the s; is n. We have also seen that this
sum is equal to 2mn + n(2n + 1). Therefore 2mn + n(2n + 1) = n, so
dividing by the non-zero integer n gives the equality 2m + 2n + 1 = 1.
Hence m = —n.

Finally, we show that if m = —n, there indeed exists a solution. Let
a; =t and apy; =1 —14 for 1 <7 < n. Then the integers 1,2,...,n and
the integers 0,—1,...,—n + 1 are values of vertices; these are precisely
the integers m 4+ 1,m + 2,...,m + 2n for m = —n. Moreover, we have

s; =i+ (1 —14) =1 for all 7. Hence all rectangular sums are equal to 2,
which is a prime number.

Therefore m = —n is the only value of m for which the there exists a
solution. |
3. We rewrite the equation as 23 + y3 — 23y = —32%y?, which gives

(x +y)> —23y® = 23 + 322y + 3ay® + > — 2393
= —32%y* + 32%y + 3xy® = 3zy(—xy + 2 +y).
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Using the identity a® — b3 = (a — b)(a® + ab + b?) we can also write this as

b
(z+y)° —2°y’ = (z +y —ay)((z +y)* + 2yl +y) + (2y)°)
= (z +y —ay)(@® +y* + 22y + 2y +ay® + 2%y?).
Therefore the two right hand sides are equal, so we see that either x4+y—zy =
0 or 22 +y? 4+ 2zy+ 22y +2y® +22y? = 3zy. The latter case can be rewritten
as
0=a?+y? — oy + 22y + zy® + 2%
=1z —y)?+ 322 +2y+1)+ 3y’ (a® + 22+ 1)
=5z -y’ +32°(+ 17+ 5=z +1)%
So since the sum of three squares must be 0, each of the squares must be
0 as well. Hence z = y = —1. This indeed gives a solution of the given
equation, and we have % + i =2.
In the remaining case we have z+y —xy = 0, so % + % —1 =0, from which
we deduce that % + % = 1. This is attained for example for z =y = 2.

Therefore the possible values are —2 and 1. o ([
X
. We consider the configuration in the figure; N
the proof is similar for the other configur-
ations. B

A
M
(a) First, we have AXMC ~ AMBC. U

We have ZAMX = 180714— lAXJ\‘iC - Z\B%C = 180° — LXMC —
M BM M

IMXC=/MCX, and x| = [arX| = [CX] S0 We have AAMX ~

AMCX. Hence ZXAM = ZXMC, so using the converse of the

tangent chord angle theorem we see that C' M is tangent to ).

(b) Let S be the second intersection point of AC and € (or the point at
which AC and 2 are tangent; which then would be A). We need to
show that S lies on NX. By the tangent chord angle theorem we have
LSMC = LSAM = LZCAM. (If S = A, then LSMC = LCAM
follows from C A and CM both being tangents, as then ACAM is
isosceles.) Therefore ACSM ~ ACMA (AA), so CM| . |SM]

[CA]| DAl
Since |CM| = 2|MN| and |[MA| = 1|AB|, it follows that % =
%. Togther with ZSMN = /SMC = /CAM = /CAB, we get

ASNM ~ ABCA. Hence ZMSN = ZABC. Moreover, we have
LXSM = 180° — ZXAM. In (a), we have seen that ZXAM =
/XMC =/MBC = /ABC, so ZXSM = 180° — ZABC = 180° —
ZMSN. Therefore S lies on X N. ([
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IMO Team Selection Test 2, June 2017

Problems

. Let a, b, and ¢ be distinct positive integers, and suppose that p = ab+bc+ca
is a prime number.
(a) Show that a2, b2, and c? give distinct remainders after division by p.

(b) Show that a3, b3, and ¢ give distinct remainders after division by p.

. The incircle of a non-isosceles triangle AABC has centre I and is tangent to
BC and CA in D and F, respectively. Let H be the orthocentre of AABI,
let K be the intersection of AI and BH and let L be the intersection of
BI and AH. Show that the circumcircles of ADK H and AELH intersect
on the incircle of AABC.

. Let k > 2 be an integer. A positive integer ¢ is said to be k-pable if the
numbers 1,3,5,...,2k — 1 can be partitioned into two subsets A and B in
such a way that the sum of the elements of A is exactly £ times as large as
the sum of the elements of B.

Show that the smallest k-pable integer is coprime to k.

. Find all functions f: R — R such that

(y+Df(@)+ fzfly)+ fla+y) =y

for all z,y € R.
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Solutions

1. (a) Suppose for a contradiction that two of a2, b?, and ¢? have the same
remainder after division by p, say a® = > mod p. Then p | a® — b? =
(a—b)(a+b),sop|a—borp|a+b In the latter case, we have
p<a-+b<cla+b)<ab+ bc+ ca = p, which is a contradiction. In
the former case, we see that by a # b, we have p < la—b| < a+b < p,
which is a contradiction.

(b) Suppose for a contradiction that two of a3, b3, and ¢® have the same
remainder after division by p, say a® = b> mod p. Then p | a® — b =
(a—b)(a®+ab+b?),s0p | a—bor p | a®>+ab+b*. The former case leads
to a contradiction, as we have seen in (a). Consider the remaining case:
p | a®+ab+b2. Then p | a®+ab+b%+(ab+bc+ca) = (a+b)(a+b+c), so
p | a+borp | a+b+c. However, note that a+b < a+b+c < ab+bec+-ca,
since a, b, and ¢ cannot all be equal to 1. Therefore p is neither a
divisor of a + b, nor a + b + ¢, which is a contradiction.

2. Consider the configuration in the fig-
ure; the solution is similar for the
other configurations.

We have ZIDB = 90° = /IKB,
so BK DI is a cyclic quadrilateral.
Moreover, we have ZALB = 90° =
/ZAKB, so BKLA is also a cyclic
quadrilateral. So

/BKD =180° — ZBID = 180° — (90° — %AABC')
=180° — ZBAL = /BKL.

Hence K, D, and L are collinear. Analogously, K, FE, and L are collinear,
from which we deduce that all four of K, D, E, and L are collinear.

Let S be the second intersection point of the circumcircles of ADK H and
AFELH. Then we have

/ZDSE =360° — Z/DSH — /ZHSE = /ZDKH +180° — ZHLE
=/LKH+ /HLK =180° — ZKHL.
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Since HLIK is also a cyclic quadrilateral (as it has two opposite right
angles) we have

180° — ZKHL = ZKIL = ZAIB = 180° — ZIBA — ZIAB
= 180° — L2CBA - L2CAB.

So Z/DSE = 180° — %ZCBA - %ACAB. Let F' be the point at which
the incircle is tangent to AB. Then AFIE and BFID are both cyclic
quadrilaterals (in both cases because of two opposite right angles). Therefore

/DFE = /DFI + ZIFE = /DBI + /IAE = 1 /CBA + } ZCAB.

We deduce that ZDFE + ZDSE = 180°, and it follows that S lies on the
circumcircle of ADEF, which is the incircle of triangle AABC. (]

. We show that if p is the smallest prime divisor of k, then p — 1 is the
smallest k-pable integer. The claim follows from this as ged(p — 1, k) = 1.

Note that 1+ 3+ 5+ ---+ (2k — 1) = k2. If £ is a k-pable integer, and s is
the corresponding sum of the elements of B, then the sum of the elements
of Ais ¢s. So the sum 1+3+5+---+ (2k — 1) is also equal to (£ + 1)s.
Hence (£ + 1)s = k2.

Since £+ 1 > 2 we have ¢ + 1 > p, with p the smallest prime divisor of k.
Hence ¢ > p — 1. We now show that £ = p — 1 is k-pable, from which it will
immediately follow that that is the smallest k-pable integer.

First suppose that k is even, so that p = 2. Then we need to show that
we can partition the set {1,3,5,...,2k — 1} into two sets with equal sum
of elements. We do this by induction on k. If £ = 4 and k = 6, we have
the partitions {1,7},{3,5} and {1,3,5,9},{7,11}. If we can partition the
set {1,3,...,2k — 1} in such a way, then we can also partition the set
{1,3,...,2(k +4) — 1} by taking a partition for the set {1,3,...,2k — 1},
and add the elements 2k + 1, 2k + 7 to one of the subsets, and 2k + 3, 2k + 5
to the other. This completes the induction.

Now suppose that k is odd. Write & = pm. Then it suffices to find a subset
B of {1,3,5,...,2k — 1} of which the sum of elements is pm?, since then
the sum of the elements of A = {1,3,5,...,2k — 1} \ B is k? — pm? =
p?>m? — pm? = (p — 1)pm?, which is exactly p — 1 times as large as the
sum of the elements of B. Consider the subset B = {p,3p,...,(2m — 1)p}.
Then the sum of elements of B is

p+3p+-+C2m—-Dp=p(1+3+--+(2m—1)) = pm?,
as desired. O
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4. Substituting z = 0 gives (y + 1)f(0) + f(f () =y, s0 f(f(y)) =y - (1 —
£(0)) — f(0). If f(0) # 1, the right hand side is a bijective function of y,
hence so is the left hand side. So in this case, f is bijective.

We will next show that in case f(0) = 1, the function f is bijective as well.
So suppose that f(0) = 1. Then f(f(y)) = —1 for all y € R. Substituting
y=0gives f(z)+ f(x + f(z)) =0, so f(z + f(x)) = —f(x). Substituting
x = f(z) and y = z and replacing each occurrence of f(f(z)) by —1, we
see that

(z+1) =1+ f(f()f () + [+ [(2) = 2
so using that f(z + f(z)) = —f(z), we see that

f(f(z)2 — f(z)) =2z+1.

Hence f is surjective. If there exist ¢ and b with f(a) = f(b), then
substituting z = a and z = b in the last equation above gives equal left
hand sides, therefore 2a + 1 = 2b + 1, from which it follows that a = b.
Hence f is injective, and therefore bijective.

So from now on, we may assume that f is bijective, dropping the assumption
that f(0) = 1. Note that f(f(y)) =y-(1— f(0)) — f(0) so substituting
y = —1 gives f(f(—1)) = —1. Substituting y = —1 in the original equation
gives

fEf(=1)+ flz=1)) = =1 = f(f(-1)).
As f is injective, it follows that xf(—1) + f(z — 1) = f(=1),s0 f(x — 1) =
f(=1)- (1 = z). Substituting © = z + 1 then gives f(z) = —f(—1)z for all
z € R. So the function f must be of the form f(z) = cx for all z € R, with
¢ € R a constant. Let us check functions of this form.

Note that
(y + D f(x) + f(af(y) + fe +y) = (y + Dex + c(wey + cx + cy)
=cxy + cxr + czxy + P+ ch.

This must equal y for all x,y € R. Substituting y = 0 and x = 1 gives
c+c? =0, so either ¢ = 0 or ¢ = —1. Substituting z = 0 and y = 1 gives
c2=1,50c=1or c=—1. We deduce that ¢ = —1, and we see that the

function given by f(xz) = —z for all z € R indeed satisfies the required
equation. So the only solution of the equation is the function given by
f(z) = —x for all z € R. O
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IMO Team Selection Test 3, June 2017

Problems

. A circle w with diameter AK is given. The point M lies in the interior of
the circle, but not on AK. The line AM intersects w in A and Q. The
tangent to w at @ intersects the line through M perpendicular to AK, at
P. The point L lies on w, and is such that PL is tangent to w and L # Q.
Show that K, L, and M are collinear.

. Let ay,as,...,a, be a sequence of real numbers such that a; +---+a, =0
and define b; = a1 +- - - +a; for 1 < i < n. Suppose that b;(aj41 —ait1) >0
forall 1 <i<j<n—1. Show that

> b l.
max lag| = max |b|

. Compute the product of all positive integers n for which 3(n!+1) is divisible
by 2n — 5.

. Let n > 2 be an integer. Find the smallest positive integer m for which
the following holds: given n points in the plane, no three on a line, there
are m lines such that no line passes through any of the given points, and
for all points X # Y there is a line with respect to which X and Y lie on
opposite sides.
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Solutions

1. Let O be the centre of w, and let V' be the intersection of M P and AK.
We first show that /PVL = ZPOL. If V and O coincide, then there
is nothing to prove. If they don’t, then ZOVP = 90° = ZOLP, so
OV PL or VOPL is a cyclic quadrilateral. (In fact, ) also lies on the
corresponding circumcircle.) Tt follows that ZPVL = ZPOL. So in all
cases, ZMVL = /PVL = ZPOL. Since PL and PQ are tangent to w,
we have AOQP = NOLP, so /POL = %AQOL. By the interior angle
theorem applied to w this angle is equal to ZQAL. Therefore

LMVL=/POL =/ZQAL=/ZMAL,

and it follows that MV AL is a cyclic quadrilateral. So ZALM = 180° —
ZAV M = 90°. Moreover, by Thales’s theorem we have ZALK = 90°, so
/ZALM = /ALK, in other words, L, M, and K are collinear. O

2. We have b,, = 0. Suppose that there exists an ¢ < n—1 such that b; > 0 and
a;+1 > 0. Then from b;(a;j 41 — a;+1) > 0 it follows that aj41 > a;41 >0,
foralli<j<n-—1. So b, =b;+a;+1+aj42+---+a, > b >0, which
is a contradiction. Therefore b; > 0 implies that a;+1 < 0. Analogously, if
b; < 0 then a;4+1 > 0.

Let k now be such that |by| = maxi<m<s |bm|. We may assume without
loss of generality that by > 0 (by multiplying all a; by —1 if necessary).
If £ =1, then by = ay, so |bg| = |a1| < maxj<i<n |ae|, in which case we
are done. Now suppose k > 1. If by_; > 0, then by the above, we have
ar < 0. On the other hand, ar = by — bx_1 > 0 since by was maximal,
which is a contradiction. Hence ay = by — b1 = b + |bp—1| > bg, so
b < |ak| < maxi<y<n |ae|, which is what we needed to prove. O

3. The integers n = 1,2, 3,4 satisfy the given condition, since in these cases,
we have that 2n — 5 is equal to —3, —1, 1, 3, respectively, which divides
3(n! + 1). So suppose from now on that n > 4 so that 2n —5 > 3.

We first show that if n satisfies the given condition, then 2n — 5 must be a
prime. We distinguish two cases. First suppose that 2n — 5 is not prime,
and has a prime divisor p > 3. Since p # 2n — 5 and since 2n — 5 is odd, it
follows that p < 2”3—’5 <mn. So p|n! but then ptn!+1,s0opt3n+1)
since p # 3. Therefore 2n — 51 3(n! + 1), so n does not satisfy the given
condition. Now suppose that 2n — 5 is not prime, and only has 3 as prime
divisor; so 2n — 5 is a power of 3 which is greater than 3. However, for

32



n >4 we have 3t n!+ 1, so 3(n! 4 1) is divisible by at most one factor 3.
So in this case, n cannot satisfy the given condition either.

So for n > 4 satisfying the given condition, we must have that 2n — 5
is a prime number greater than 3. Write ¢ = 2n — 5. Then ¢ | n! + 1,
or equivalently, n! = —1 mod q. Moreover, Wilson’s theorem states that
(g—1)!'=—-1 mod g. Therefore

—1=2n—-6)! = 2n—-6)2n—-T7)---(n+1) -n!
=(-1)-(-2)----- (—n+6)-n! = (=1)"%-(n—6)!-n!

=(-1)"-(n—-6)-—1 mod q.
So (n—6)! = (—1)" mod ¢. Since n! = —1 mod ¢, we see that n - (n —
1)ceeee (n—5)=(=1)""1! mod ¢q. Multiplying this by 25 gives

2n-(2n—2)-(2n—4)-(2n—6)-(2n—8)-(2n—10) = (-=1)""'-64 mod q.

Modulo ¢ = 2n — 5, the left hand sideis 5-3-1-—-1-—-3- -5 = —225.

Suppose n is odd. Then —225 = 64 mod ¢, so q | —225 — 64 = —289 =
—17%. Hence ¢ = 17 and therefore n = % = 11. Now suppose n is even.
Then —225 = —64 mod ¢, so q | —225+64 = —161 = —7-23. Hence ¢ =7
or ¢ = 23, which gives n = 6 or n = 14, respectively.

We check these three possibilities. For n = 11 and 2n — 5 = 17, we have

111=1-(2-9)-(3-6)-(5-7)-4-8-10-11
=4.8-10-11=88-40=3-6=1 mod 17,

so n = 11 doesn’t satisfy the condition. For n = 14 and 2n — 5 = 23,

14'=1-(2-12)-(3-8)-(4-6)-(5-14)-(7-10)-9-11-13
=9-11-13=117-11=2-11= -1 mod 23,

so n = 14 does satisfy the condition. Finally, for n = 6 and 2n —5 =7

we have 6! = —1 mod 7 by Wilson’s theorem, so n = 6 also satisfies the
condition.

So the integers n that satisfy the condition are 1, 2, 3, 4, 6, and 14. Their
product is 2016. O

. We prove the smallest such m equals 7 if n is even and ”TH if n is odd.

Choose the n points in such a way that they all lie on a circle, and denote
them by Pi, Ps, ..., P,, in the order in which they lie on the circle. The
n segments Py Py, PoPs, ..., P, P must all be intersected by at least one
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line. As every line intersects the circle at most twice, every line intersects
at most two of these segments. This shows that the number of lines is at

least 5 if n is even and at least "T'H if n is odd.

We now show this number of lines suffices. First we show that given four
distinct points Py, P», and @1, @2, there always exists a line with respect
to which P; and P, lie on opposite sides, as well as ()1 and Q2. Take the
line through the midpoints of the segments P, P> and QQ1Q2. Suppose this
line passes through P;. Then this line passes through P» as well, and as no
three of the given points lie on a line, this line does not pass through Q1,
nor through @)2. Hence one can rotate this line a bit around the midpoint of
P, P, in such a way that it still intersects the segment Q1Q2, and such that
neither P; nor P; lie on it. The three remaining cases are done analogously.

Now if this line still passes through one of the other given points, one can
move this line around a tiny bit for it to no longer pass through any of the
given points; this is always possible as there are only finitely many points.
Now P; and Ps, as well as @1 and @2, lie on opposite sides of this line.

Assume that n is even; if n is odd, we add an arbitrary point that is not on
any line through any pair of given points. The lines that we are about to
construct, still give a correct example if we remove the extra point. So we
need to construct 5 lines. Fix an arbitrary line such that no line through
two of the given points is parallel to it; this is possible as there are only
finitely many pairs of points, and infinitely many directions to choose from.
Translate this line across the plane. This line will meet the given points
one by one. So at some point, there are no points on the line, and on both
n

sides of the line there are 5 points. This will be our first line.

The plane is now split into two regions, say the left region, and the right
region. We now add lines in such a way that every line creates a new region
in the left region, as well as the right one. (We will only consider regions
containing at least one of the given points.) To this end, we pick two points
in the left region that aren’t separated yet by a line, and two points in
the right region that aren’t separated yet by a line, and pick a line that
separates the two points in the left region, as well as the points in the right
region; we have seen before that this is possible. This creates a new region
in both the left region and the right region, as the line separates pairs of
points in both regions that weren’t separated before. If at some point,
either the left or the right region no longer contains pairs of points that
are not separated, then we will only use the points in the remaining region.

After adding % — 1 lines, we will have, in both the left and the right region,
at least 5 regions, each containing at least one given point; so each region
has to contain exactly one given point. In total we have used 5 lines. Hence,
it is always possible to satisfy the given condition with 5 lines. O
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Junior Mathematical Olympiad, October 2016

Problems

Part 1

. The sum of the digits of a number is obtained by adding the digits of this
number. For example, the sum of the digits of 76 equals 7+ 6 = 13. The
sum of the digits of the double of 76 is 1 + 5+ 2 = 8.

How many numbers consisting of two digits are there for which the sum of
the digits equals the sum of the digits of the double of the number?
Attention: the first digit cannot be a zero. Thus, the number 09, for example,
is ruled out.

A) 0 B) 8 Q)9 D) 10 E) 11

. Birgit, Dion, Huub, Jaap, Peter, and Thijs are
standing in this order along a circle. They are Peter .. Jaap
playing a ball game, in which, at every turn, a
they pass the ball to a person directly next /
to them or exactly opposite to them. Initially, ‘

Birgit has the ball. After five passes, everybody N y

has had the ball exactly once and the game NS )
ends. '“\~‘.’_ifﬁ "5_*-""
Who can have the ball at the end of the game? Birgit """ Dion
A) Only Dion and Thijs D) Only Dion, Huub, Peter, and Thijs

B) Ouly Dion, Jaap, and Thijs  E) Everybody except Birgit
C) Ounly Huub, Jaap, and Peter

. Four distinct straight lines are drawn on a (infin-
itely big) piece of paper. The number of points
in which two or more lines intersect is counted.
In the figure on the right, you see an example in
which four lines intersect each other in 6 points.
This number of intersection points does not al-
ways have to be 6.

What number of intersection points is not pos-
sible?

A) 1 B) 2 Q) 3 D) 4 E) 5
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4. A baker’s helper is filling cream puffs for one and a half hours. He is not
in a hurry and he is filling two cream puffs every minute. At some point,
the baker comes in and supervises the helper for a while. This motivates
the helper to work a bit faster: during this time he is filling three cream
puffs per minute. As soon as the baker has left, the helper reverts to filling
the cream puffs at the initial, slow, pace. Afterwards, it turns out that
during any continuous one hour period within these one and a half hours,
the helper has filled exactly 140 cream pulffs.

How many cream puffs are filled by the helper during the full one and a
half hours?

A)180  B)200  C)210  D)230  E)270

5. Start with the number 60. Then, keep repeating the following two steps:

(1) Throw a die and look at the number that comes up.

(2) If your number is divisible by the number on the die, then you divide
your number by the number on the die. If not, then you multiply your
number by the number on the die.

In this way, you obtain a sequence of numbers. If your first three rolls are
5, 6, and 3, consecutively, then the first four numbers in your sequence are
60, 60/5 =12, 12/6 = 2, and 2 x 3 = 6.

What is the greatest number you can obtain in this way?

A) 60 B) 120 C) 240

D) 360 E) You can obtain arbitrarily large numbers

6. Harry and Hermione are trapped in a room in which 6 bottles are put next
to each other. From left to right, the bottles are numbered 1 to 6. One
of the bottles contains a potion that helps them to escape. On a piece of
paper there are four clues to help them:

e 3 of the bottles contain poison, 2 of the bottles contain sleeping
draught; the remaining bottle contains the potion to escape.

e Immediately left to the sleeping draught there is poison.

e The smallest bottle contains poison.

e The second bottle from the left and the second bottle from the right
have the same content.
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Hermione now has enough information to identify the bottle which contains
the potion to escape. Which bottle is the smallest bottle?

A) Bottle 1 B) Bottle 2 or 5 C) Bottle 3
D) Botttle 4 E) Bottle 6

. A net of a cube is made by cutting a cube along some
of the ribs until you can flatten it out (after cutting,
you must still have one connected whole). By doing
this in different ways, you can create different nets.
The figure on the right consists of 8 squares. The 6
grey squares together form a net.

In how many other ways can you choose 6 squares in the figure that together
form a net?

A) 3 B) 4 Q)5 D) 7 E) 9

. Between the digits of the number 2016, we put one or more symbols from
x, +, and — (you are allowed to use a symbol multiple times). In this
way, we can create different numbers, such as 20 + 1 x 6, which is 26, and
201 x 6, which is 1206.

How many of the numbers from 1 to 10 are, just like 26 and 1026, the result
of such a calculation? (Attention: you cannot put a — before the 2!)

A) 6 B) 7 C) 8 D) 9 E) 10
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Part 2

. All vehicle registration plate numbers in the country Wissewis consist of
three two-digit numbers. A plate number is considered beautiful if it has
the following two properties:

e it consists of six distinct digits;

e the first number is smaller than the second number and the second
number is smaller than the third number.

An example of a beautiful plate number is 03-29-64.
How many beautiful plate numbers are there that have 61 as the first
number?

. Alice, Bob, Carla, Daan, and Eva are standing in this order along a circle
(Bob is standing to the left of Alice). Each of them has a number of sweets,
they have 100 sweets in total. All at the same time, they give part of their
sweets to their left neighbour: Alice gives away % of her sweets, Bob i,
Carla %, Daan é, and Eva % After this, everybody has the same number
of sweets as before.

How many sweets does Eva have? E

. In the figure on the right, rectangles ABCD and P ©

BDEF are shown. The length of AB is 8 and the
length of BC' is 5.
What is the area of pentagon ABFED?

A B

. In this problem we consider three-digit numbers of which no digit is a zero.
Such a number is called a lucky number if:
e the number is divisible by 4, and
e if you change the order of the three digits, you will still always get a
number divisible by 4.

For example, the number 132 is not a lucky number, because 132 is divisible
by 4, but 231 is not.
How many lucky numbers are there?

. How many times a day (which is 24 hours) are the small hand and the big
hand of the clock perpendicular?
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6. Janneke, Karin, Lies, Marieke, and Nadine participated in a running race.
They all finished at distinct times except for two of them; they finished at
the same time. Moreover, we know that:

e at least three runners finished before Janneke;

e after Karin finished but before Lies finished, exactly two others crossed
the finish line;

e Marieke was not the first to finish;

o shortly after Nadine finished, Janneke crossed the finish line; nobody
else was in-between.

Which two runners finished at the same time?

7. For all positive integers a and b we make the number ¢ O b. The following
rules hold:

erulel: 101 =1;
o rule 2: aQb=00aq;
o rule 3: aQ(Mb+c)=a+(aVb)+ (aVec).

From these rules it follows, for example, that
201=102=191+1)=14+101+101=14+1+1=3.

Calculate 20 Q 16.

8. We create a sequence of numbers. To get the next number in the sequence,
we repeatedly do the following:

e if the previous number is odd: multiply this number by itself and add
3;

e if the previous number is even: divide this number by 2.

For example, when we start with 5, we obtain 5 x 5 + 3 = 28 as second
number and 22—8 = 14 as third number in the sequence. As starting number
we are allowed to choose any of the numbers from 1 to 1000.

For how many of these starting numbers will the tenth number in the

sequence be smaller than 107
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Solutions
Part 1
1. D)10

2.  B) Only Dion, Jaap, and Thijs

3. B)2
4. B) 200
5. E) You can obtain arbitrarily large numbers

6. E) Bottle 6

7. Q)5

8. B)7

Part 2

1. 90 5. 44

2. 28 6. Janneke and Lies
3. 60 7. 924

4. 8 8. 17
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