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Introduction

The selection process for IMO 2015 started with the first round in January
2014, held at the participating schools. The paper consisted of eight multi-
ple choice questions and four open questions, to be solved within 2 hours.
In total 23% more students than in 2013 participated in this first round:
to be precise: 9161 students of 323 secondary schools.

The 1000 best students were invited to the second round, which was held in
March at twelve universities in the country. This round contained five open
questions, and two problems for which the students had to give extensive
solutions and proofs. The contest lasted 2.5 hours.

The 130 best students were invited to the final round. Also some outstand-
ing participants in the Kangaroo math contest or the Pythagoras Olympiad
were invited. In total about 150 students were invited. They also received
an invitation to some training sessions at the universities, in order to pre-
pare them for their participation in the final round.

The final round in September contained five problems for which the stu-
dents had to give extensive solutions and proofs. They were allowed 3
hours for this round. After the prizes had been awarded in the beginning
of November, the Dutch Mathematical Olympiad concluded its 53rd edition
2014.

The 31 most outstanding candidates of the Dutch Mathematical Olympiad
2014 were invited to an intensive seven-month training programme. The
students met twice for a three-day training camp, three times for a single
day, and finally for a six-day training camp in the beginning of June. Also,
they worked on weekly problem sets under supervision of a personal trainer.
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Among the participants of the training programme, there were some extra
girls, as this year we participated again in the European Girls’ Mathemat-
ical Olympiad (EGMO). In total there were eight girls competing to be in
the EGMO team. The team of four girls was selected by a selection test,
held on 6 March 2015. They attended the EGMO in Minsk, Belarus from
14 until 20 April, and the team returned with two honourable mentions.
For more information about the EGMO (including the 2015 paper), see
www.egmo.org.

The same selection test was used to determine the ten students partici-
pating in the Benelux Mathematical Olympiad (BxMO), held in Mersch,
Luxembourg, from 8 until 10 May. The Dutch team received four bronze
medals and three silver medals. For more information about the BxMO
(including the 2015 paper), see www.bxmo.org.

In June the team for the International Mathematical Olympiad 2015 was
selected by two team selection tests on 5 and 6 June 2015. A seventh,
young, promising student was selected to accompany the team to the IMO
as an observer C. The team had a training camp in Chiang Mai, from 30
June until 8 July.

For younger students the Junior Mathematical Olympiad was held in Oc-
tober 2014 at the VU University Amsterdam. The students invited to
participate in this event were the 100 best students of grade 2 and grade 3
of the popular Kangaroo math contest. The competition consisted of two
one-hour parts, one with eight multiple choice questions and one with eight
open questions. The goal of this Junior Mathematical Olympiad is to scout
talent and to stimulate them to participate in the first round of the Dutch
Mathematical Olympiad.

We are grateful to Jinbi Jin and Raymond van Bommel for the composition
of this booklet and the translation into English of most of the problems and
the solutions.
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Dutch delegation

The Dutch team for IMO 2015 in Thailand consists of

• Eva van Ammers (17 years old)

– participated in EGMO 2014, honourable mention at EGMO
2015

• Dirk van Bree (17 years old)

– bronze medal at BxMO 2015

• Tim Brouwer (18 years old)

– bronze medal at BxMO 2015

• Yuhui Cheng (19 years old)

– participated in BxMO 2014, bronze medal at BxMO 2015

• Mike Daas (17 years old)

– bronze medal at BxMO 2015

• Bob Zwetsloot (17 years old)

– bronze medal at BxMO 2013, bronze medal at BxMO 2014,
silver medal at BxMO 2015

– observer C at IMO 2014

We bring as observer C the promising young student

• Levi van de Pol (13 years old)

– silver medal at BxMO 2015

The team is coached by

• Quintijn Puite (team leader), Eindhoven University of Technology

• Birgit van Dalen (deputy leader), Leiden University

• Merlijn Staps (observer B), Utrecht University
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First Round, January 2014

Problems

A-problems

1. 4

3

2

1
A B C D

We are given a 4×4 table and want to colour four
of the 16 cells black. This should be done in such
a way that every row and every column has exactly
one black cell, and no two black cells are diagonally
adjacent (share a corner point).
In how many ways can we choose the four black cells?

A) 1 B) 2 C) 3 D) 4 E) It is impossible.

2. A pond contains both red and yellow carp. Two fifths of the carp are
yellow, the rest of the carp are red. Three quarters of the yellow carp are
female. In total, there are an equal number of male and female carp.
Which fraction of the total carp population are red males?

A) 1
5 B) 1

4 C) 3
10 D) 2

5 E) 1
2

3. Seven lily pads are numbered 1 through 7 from left to right. A frog jumps
along these pads. It can jump to the left and to the right, but only by
leaps of three or five pads at once. For example, starting from pad 2, it
can only leap to pads 5 and 7. The frog wants to make a journey in which
he visits each pad exactly once (so the first and last pad on his journey
will be different).

1 2 3 4 5 6 7

Which pads can be the starting point of such a journey?

A) pads 1 to 7 B) pads 1, 3, 5, and 7 C) pads 3 and 5
D) pad 4 E) none of the pads
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4. A square paper ring has height 1, and the sides have length 4. The ring is
depicted in the left hand figure. By folding it flat on the tabletop, we get
the right hand figure, where ABCD is a square.

A D

CB

1

4

A D

CB

What is the length of side AB?

A) 5
2 B) 3 C) 7

2 D) 4 E) 9
2

5. Tom and Jerry were running a race. The number of runners finishing before
Tom was equal to the number of runners finishing after him. The number
of runners finishing before Jerry was three times the number of runners
finishing after him. In the final ranking, there are precisely 10 runners in
between Tom and Jerry. All runners finished the race, and no two runners
finished at the same time.
How many runners participated in the race?

A) 22 B) 23 C) 41 D) 43 E) 45

6. A garden with a pond (the black hexagon) will
be tiled using hexagonal tiles as in the figure.
The tiles come in three colours: red, green and
blue. No two tiles that share a side can be of
the same colour.
In how many ways can the garden be tiled?

A) 3 B) 6 C) 12 D) 18 E) 24
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7. In the figure, a quadrilateral ABCD is drawn. The midpoint of side AB
is called M . The four line segments AM , BM , BC, and AD each have
length 8, and the line segments DM and CM both have length 5.
What is the length of line segment CD?

8

5
8

8

8
5

?

A M B

CD

Beware: the figure is not drawn to scale.

A) 3 B) 40
13 C) 25

8 D) 16
5 E) 13

4

8. A motorboat is moving with a speed of 25 kilometres per hour, relative to
the water. It is going from Arnhem to Zwolle, moving with the constant
current. At a certain moment, it has travelled 42% of the total distance.
From that point on, it takes the same amount of time to reach Zwolle as
it would to travel back to Arnhem.
What is the speed of the current (in kilometres per hour)?

A) 3 B) 4 C) 9
2 D) 5 E) 6
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B-problems
The answer to each B-problem is a number.

1.

C

BA

A square is divided into six rectangles, all of the same
area. The length of side AB equals 5.
What is the length of side BC?
Beware: the figure is not drawn to scale.

2. Carl has a large number of apples and pears. He wants to pick ten pieces
of fruit and place them in a row. He wants to do it in such a way that there
is no pear anywhere between two apples. For example, the fruit sequences
AAAAAAAAAA and AAPPPPPPPP are allowed, but AAPPPPPPPA
and APPPPPPPAA are not.
How many sequences can Carl make?

3. If you were to compute

999 . . . 99︸ ︷︷ ︸
2014 nines

× 444 . . . 44︸ ︷︷ ︸
2014 fours

and then add up all digits of the resulting number, what number would
the final outcome be?

4. We consider 5×5-tables containing a number in each of the 25 cells. The
same number may occur in different cells, but no row or column contains
five equal numbers. Such a table is called pretty if in each row the cell in
the middle contains the average of the numbers in that row, and in each
column the cell in the middle contains the average of the numbers in that
column. The score of a pretty table is the number of cells that contain a
number that is smaller than the number in the cell in the very middle of
the table.
What is the smallest possible score of a pretty table?
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Solutions

A-problems

A1. B) 2 Suppose that we colour B2 black. Then the surrounding 8

cells cannot be coloured black. Indeed, the cells above, below, to the left,
and to the right of B2 are in the same row or column as B2, while the
other four cells are diagonally adjacent to B2. This way, only row 4 and
column D remain and in each we can colour only one cell black. In total
we can colour no more than 3 cells black. We conclude that B2 cannot be
coloured black.

Similarly, we may deduce that cells B3, C2, and C3 cannot be coloured
black. It follows that in row 2, we can only colour A2 or D2 black. If we
colour A2 black, then in row 3 cell D3 must be coloured black because A3
is in the same column as A2. In rows 1 and 4 we now have no choice but
to colour cells C1 and B4 black. This gives us one solution.

If instead of A2 we colour cell D2 black, then we find a solution where
cells D2, A3, B1, and C4 are coloured black. In total, we have two ways
of choosing the black squares.

A2. D) 2
5 From the given data, we deduce that 2

5 ·
3
4 = 3

10 of the carp

are yellow females. Since half the carp are female, we find that 1
2 −

3
10 = 1

5
of the carp are red females. Finally, using the fact that three fifths of the
carp are red, we see that 3

5 −
1
5 = 2

5 of the carp are red males.

A3. C) 3 and 5 The journey that visits the pads in the order 3, 6, 1, 4, 7, 2,

and 5 (or in the opposite order), shows that pads 3 and 5 are the starting
pad of a possible journey. We will see that these are the only possible
starting points.

We say that two pads are neighbours if the frog can jump from one pad
to the other (and hence also the other way around). Every intermediate
pad in the frog’s journey must have at least two neighbours: the pad the
frog came from and the pad it will go next. Since pads 3 and 5 have only
one neighbour (pad 6 and pad 2 respectively), these must be the starting
point and end point of the frog’s journey. The other pads must therefore
be intermediate pads.
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A4. B) 3 Consider the top rim of the paper ring (indicated in bold).

The rim has length 4 × 4 = 16. In the folded state, the rim becomes
rectangle EFGH. Since |AE| = |BF | = |CG| = |DH| = 1, we find that
|AB|+ |FG|+ |CD|+ |EH| = 16− 4 = 12. These four lengths equal the
length of the sides of square ABCD. It follows that the square has sides
of length 12

4 = 3.

1

4

A

E

D

H

C

G

B

F

A5. E) 45 Let n be the number of runners. The number of runners

that finished before Tom equals 1
2 (n−1) (half of all runners besides Tom).

The number of runners that finished before Jerry equals 3
4 (n − 1). Since

exactly 10 runners finished between Tom and Jerry, it follows that 3
4 (n−

1)− 1
2 (n− 1) equals 11 (Tom and the 10 runners between Tom and Jerry).

We find that 1
4 (n − 1) = 11, hence n = 4 × 11 + 1 = 45. There were 45

runners participating in the race.

A6.

r
g

D) 18 We start by colouring the two indi-

cated tiles at the bottom. This can be done in
six ways: there are three options for the first tile
and for each option there are two possible colours
for the second tile. In the figure, the colours red
(r) and green (g) are chosen.

Now that these two tiles are coloured, the colours
of most of the other tiles are determined as well.
The tile above the red tile can only be blue. The
tile above the green tile must be red and therefore the tile left of the green
tile must be blue. In this way the colours of all tiles, except the two on
the right (white in the figure), are fixed. For these last two tiles, there are
three possible colourings. The upper and lower tile can be coloured either
green and red, or blue and red, or blue and green.

Since each of the six allowed colourings of the first two tiles can be extended
in three ways to a complete colouring, we find a total of 6×3 = 18 possible
colourings.
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A7. C) 25
8 Observe that AMB is a straight angle. This implies that

∠AMD+∠DMC +∠CMB = 180◦. Since triangles AMD and BMC are
equal (three equal sides), we see that ∠CMB = ∠MDA. Hence ∠DMC =
180◦ −∠AMD−∠MDA = ∠DAM , because the angles of triangle AMD
sum to 180 degrees. It follows that DMC and DAM are isosceles triangles
with equal apex angles. Hence these two triangles are equal up to scaling.

This means that |CD|
|DM | = |DM |

|AD| . Therefore, the length of CD equals 5
8 · 5 =

25
8 .

A8. B) 4 From the mentioned point, it takes the same time to go

42% of the distance upstream and to go 58% of the distance downstream.
This means that the boat is 58

42 times as fast going downstream as going
upstream. If the water flows at a speed of v kilometres per hour, then we
find 25+v

25−v = 58
42 . Hence 58·(25−v) = 42·(25+v), or 1450−58v = 1050+42v.

We find 400 = 100v, hence v = 4.

B-problems

B1.
C

B

a

b

cdf

e

5

24
5 The six rectangles have equal areas.

Rectangles c and d are twice as tall as rectangle
a and therefore also twice as thin. Hence they
have width 5

2 . Rectangle e thus has a width of
5
2 + 5

2 +5 = 10 and must be half as tall as rectangle
a. This means that rectangle f is precisely 5

2
times as tall as rectangle a and therefore has a
width of 5

5/2 = 2. It follows that the square has

sides of length 5 + 5
2 + 5

2 + 2 = 12. Because
the square has a height of 5

2 times the height of
rectangle a, the height of rectangle a equals |BC| = 12

5/2 = 24
5 .

B2. 56 One sequence consists of pears alone. Next, we count se-

quences containing at least one apple. In such a sequence, all apples occur
consecutively, because there can be no pear anywhere between two apples.
If we want to have 8 apples, we can place them in positions 1 through 8,
2 through 9, or 3 through 10. This gives three possible sequences. In this
way we find 1 sequence containing 10 apples, 2 sequences containing 9 ap-
ples, 3 sequences containing 8 apples, and so on, ending with 10 sequences
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containing 1 apple. In total there are 1 + 2 + 3 + · · ·+ 10 = 55 sequences
containing at least one apple. The total number of sequences is therefore
55 + 1 = 56.

B3. 18126 A good strategy is to first consider smaller examples. We

find

9× 4 = 40− 4 = 36,

99× 44 = 4400− 44 = 4356,

999× 444 = 444000− 444 = 443556,

9999× 4444 = 44440000− 4444 = 44435556.

The pattern should be clear. To solve the problem, observe that 999 . . . 99 =
1000 . . . 00 − 1, where the first number has 2014 zeroes. The product is
therefore equal to

444 . . . 44︸ ︷︷ ︸
2014 fours

000 . . . 00︸ ︷︷ ︸
2014 zeroes

− 444 . . . 44︸ ︷︷ ︸
2014 fours

= 444 . . . 44︸ ︷︷ ︸
2013 fours

3 555 . . . 55︸ ︷︷ ︸
2013 fives

6.

Adding these digits, we obtain 2013·4+3+2013·5+6 = 2013·9+9 = 18126.

B4. 4 4 3 4 0
4 4 3 4 0
3 3 0 3 −9
4 4 3 4 0
0 0 −9 0 −36

3 We first show that every pretty ta-

ble has a score of at least 3. Consider such a table
and let a be the number at the very middle. The
five numbers in the middle row have an average
of a and are not all equal to a. Hence at least
one of these numbers must be smaller than a. Similarly, at least one of the
numbers in the middle column must be smaller than a. Let this number
be b. Since b is the average of the numbers in its row, one of the numbers
in that row must be smaller than b, and hence also smaller than a. Thus
the table contains at least three different cells that have a number smaller
than the number in the very middle. Its score is therefore at least 3.

In the figure on the right you can find a pretty table with a score equal to
3. It follows that 3 is the smallest possible score.
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Second Round, March 2014

Problems

B-problems
The answer to each B-problem is a number.

B1. Brenda is filling pouches from an unlimited supply of red and blue marbles.
In each pouch she puts more red than blue marbles, and each pouch can
contain at most 25 marbles. For example, she can make a pouch containing
6 red marbles and 2 blue marbles, or a pouch containing 1 red marble and
0 blue marbles.
How many differently filled pouches can she make in total?

B2.

A B

C

C′

D

E
?

In the figure an equilateral triangle ABC
is drawn with points D and E on sides
BC and AC. When folding the triangle
along the line DE, the vertex C is folded
onto point C ′ on line AB. Furthermore,
∠DC ′B = 90◦ holds.
What is the size of ∠DEC ′?
Beware: the figure is not drawn to scale.

B3. For how many of the integers n from 1 up to and including 100 is the
number 8n + 1 a perfect square?

B4. Evan and nine other people are standing in a circle. All ten of them think
of an integer (that may be negative) and whisper their number to both
of their neighbours. Afterwards, they all state the average of the two
numbers that were whispered in their ear. Evan states the number 10,
his right neighbour states the number 9, the next person along the circle
states the number 8, and so on, finishing with Evan’s left neighbour who
states the number 1.
What number did Evan have in mind?
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B5.

?
The numbers of dots on two opposite faces of a die
always sum to 7. Nine identical dice are glued in
a 3×3-array. This is done in such a way that when
two faces are glued together, they must contain
the same number of dots. In the figure you can
see the top view of the array. For five of the dice
the number of dots is not shown.
What number of dots must be on the place of the
question mark?

C-problems For the C-problems not only the answer is important; you also have to

describe the way you solved the problem.

C1. We are given a quadrilateral ABCD. The midpoint of AB is denoted by
E and the midpoint of CD is denoted by F . The segments AF , BF , CE,
DE, and EF divide the
quadrilateral into eight tri-
angles. The areas of these
triangles are denoted by the
letters from a to d and p to s,
see the figure.

(a) Prove that a+d = p+q.

(b) Prove that a+r = c+p.

(c) Prove that b+s = d+q.

A E B

F
D

C

a

b

c

d

p

q

r

s

C2. A positive integer n is called a jackpot number if it has the following prop-
erty: there exists a positive integer k consisting of two or more digits, all of
which are equal (such as 11111 or 888), for which the product n ·k is again
a number consisting of equal digits. For example, 3 is a jackpot number
because 3 · 222 = 666.

(a) Find a jackpot number consisting of 10 digits and prove that it is a
jackpot number.

(b) Prove that 11 is not a jackpot number.

(c) Determine whether 143 is a jackpot number and prove that your an-
swer is correct.
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Solutions

B-problems

B1. 169 Brenda can make 25 differently filled pouches without blue

marbles as she can put 1 to 25 red marbles in a pouch. There are 23
differently filled pouches possible containing 1 blue marble because 2 to 24
red marbles may be added. Using 2 blue marbles there are 21 possibilities,
namely by adding 3 to 23 red marbles. In total, there are 25+23+. . .+1 =
169 differently filled pouches that Brenda can make.

B2.

A B

C

C′

D

E

60◦

45◦ First, we notice that triangles

CDE and C ′DE are each other’s mirror im-
age and hence have equally sized angles. In
particular, we have ∠DC ′E = ∠DCE =
60◦. Furthermore, we have ∠CED = ∠DEC ′,
see the figure.

From ∠AC ′B = 180◦ it follows that ∠AC ′E =
180◦− 90◦− 60◦ = 30◦. The sum of the an-
gles in triangle AC ′E is 180◦ and hence we
find ∠AEC ′ = 180◦ − 60◦ − 30◦ = 90◦.
From ∠AEC = 180◦ it follows that ∠CEC ′ = 180◦ − 90◦ = 90◦.
We conclude that ∠DEC ′ = 1

2∠CEC ′ = 45◦.

B3. 13 If 8n + 1 is the square of an integer, then this integer must

be odd. Conversely, the square of an odd integer is always a multiple of
8 plus 1. Indeed, suppose that k is an odd integer, then we may write
k = 2` + 1 for an integer `. We see that

k2 = (2` + 1)2 = 4`2 + 4` + 1 = 4`(` + 1) + 1.

Because either ` or ` + 1 is even, we deduce that 4`(` + 1) is divisible by
8. Hence, k2 is a multiple of 8 plus 1.

As a result, we only need to determine the number of odd squares x for
which 8 · 1 + 1 ≤ x ≤ 8 · 100 + 1. These are the squares 32 = 9, 52 = 25 up
to and including 272 = 729, because 292 = 841 is greater than 801. Thus,
the number of squares of the desired form is 13.
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B4. 5 The number that Evan came up with is denoted by c10, the

number of his right neighbour is denoted by c9, continuing in this way until
the left neighbour of Evan, whose number is denoted by c1. From the data
we deduce that

c10 + c8 = 2 · 9 = 18,

c8 + c6 = 2 · 7 = 14,

c6 + c4 = 2 · 5 = 10,

c4 + c2 = 2 · 3 = 6,

c2 + c10 = 2 · 1 = 2.

Adding up these equations yields 2(c2 + c4 + c6 + c8 + c10) = 50, hence
c2 + c4 + c6 + c8 + c10 = 25.
Finally, we find c10 = (c2 + c4 + c6 + c8 + c10) − (c2 + c4) − (c6 + c8) =
25− 6− 14 = 5.

B5. 3 The numbers of dots on opposite faces of a die will be called

complementary. Together, they always add to 7. Consider a pair of dice
that touch in faces with equal numbers of dots. We still allow them to
rotate with respect to each other. When rotating the dice, their faces
show the same numbers of dots, but in reverse cyclic order.

Consider the situation where the numbers of dots on the top faces of the
dice are complementary, say a and 7− a. This is depicted in the figure on
the left. On the four faces around the gluing axis, the left hand die will
have a, b, 7− a, and 7− b dots in this order, for some b. Hence, the right
hand die has these numers in reverse cyclic order: 7 − a, b, a, and 7 − b
dots on the corresponding faces. It follows that the dice have the same
number of dots on the front face, namely b, and the same number of dots
on the back face, namely 7− b.

Conversely, if two glued dice have the same number of dots on the front
faces (or back faces), then the numbers of dots on the top faces must be
complementary.

_
aa

b

_

b

b7

7_
a

7

?

c d

g h

e f
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We will now apply this to the six dice in the first two columns of the
3×3 array, see the figure on the right. The two dice in the third row
show complementary numbers of dots on their top faces, namely 2 and 5.
Therefore, the numbers of dots c and d, on the faces where the dice are
glued to dice in the second row, must be equal. This in turn implies that
the numbers of dots e and f on the top faces must be complementary.
Therefore, the numbers g and h are equal. Finally, the top faces of the
dice in the first row must show complementary numbers of dots. Hence,
there must be 3 dots on the place of the question mark.

C-problems

C1. (a) First, we notice that a+d is the area of triangle AEF and p+q is the
area of triangle BEF . The base AE of triangle AEF has the same
length as the base BE of triangle BEF . Because the two triangles
have the same height, they must also have equal areas.

(b) Here we use that triangles DEF and CEF have bases of the same
length (|DF | = |CF |), and equal corresponding heights. Hence, they
have equal areas. This implies that c + d = q + r. Subtracting the
equation of part (a) yields c− a = r− p, or a+ r = c+ p, as required.

(c) The heights of triangles AED, BEC and ABF with respect to the
bases AE, BE, and AB are denoted by x, y, and z. Because F is the
midpoint of CD, the height z is the average of the heights x and y,
in formulas: x+y

2 = z. The area of triangle AED is 1
2 · x · |AE|, the

area of triangle BEC is 1
2 · y · |BE|, and the area of triangle ABF is

1
2 · z · |AB|. Because E is the midpoint of AB we have |AE| = |BE|
and |AB| = 2 · |AE|. The sum of the areas of triangles AED and
BEC is thus equal to 1

2 · (x + y) · |AE| = z · |AE|, while the area of
triangle ABF is equal to 1

2 · z · 2|AE| = z · |AE|. Hence, these areas
are equal and we find a + b + p + s = a + d + p + q. By subtracting
a+ p on both sides of the equation, we find b+ s = d+ q, as required.
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C2. (a) Consider the ten digit number 1001001001. If we multiply it with 111,
we get the number 111111111111 which consists of ones only. Hence,
the number 1001001001 is a jackpot number.

(b) Let k be a number of at least two digits, all of which are equal, say
equal to a. Remark that a 6= 0. We have to prove that the digits of
the number

11k = k + 10k = a · · · a + a · · · a0

are not all equal.

The last digit of 11k is a. We will show that the second last digit of
11k is unequal to a. There are two cases. If a ≤ 4, then the second
last digit of 11k is equal to a + a. This is unequal to a as a 6= 0. If
a ≥ 5, then the second last digit of 11k is equal to a+ a− 10. This is
unequal to a as a 6= 10. We conclude that 11 is not a jackpot number.

(c) That 143 is a jackpot number follows directly from the fact that 143 ·
777 = 111111.
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Final Round, September 2014

Problems

1. Determine all triples (a, b, c), where a, b, and c are positive integers that
satisfy a ≤ b ≤ c and abc = 2(a + b + c).

2.

A B

CD

G

H

Version for junior students
Let ABCD be a parallelogram with an
acute angle at A. Let G be a point on
the line AB, distinct from B, such that
|CG| = |CB|. Let H be a point on the line
BC, distinct from B, such that |AB| =
|AH|.
Prove that triangle DGH is isosceles.

2.

A B

C

W

V

U

Version senior students
On the sides of triangle ABC, isosce-
les right-angled triangles AUB, CV B,
and AWC are placed. These three tri-
angles have their right angles at ver-
tices U , V , and W , respectively. Tri-
angle AUB lies completely inside tri-
angle ABC and triangles CV B and
AWC lie completely outside ABC. See
the figure.
Prove that quadrilateral UV CW is a parallelogram.

3. At a volleyball tournament, each team plays exactly once against each
other team. Each game has a winning team, which gets 1 point. The
losing team gets 0 points. Draws do not occur. In the final ranking, only
one team turns out to have the least number of points (so there is no
shared last place). Moreover, each team, except for the team having the
least number of points, lost exactly one game against a team that got less
points in the final ranking.

a) Prove that the number of teams cannot be equal to 6.

b) Show, by providing an example, that the number of teams could be
equal to 7.
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4. A quadruple (p, a, b, c) of positive integers is called a Leiden quadruple if

• p is an odd prime number,

• a, b, and c are distinct and

• ab + 1, bc + 1 and ca + 1 are divisible by p.

a) Prove that for every Leiden quadruple (p, a, b, c) we have p + 2 ≤
a+b+c

3 .

b) Determine all numbers p for which a Leiden quadruple (p, a, b, c) exists
with p + 2 = a+b+c

3 .

5. We consider the ways to divide a 1 by 1 square into rectangles (of which
the sides are parallel to those of the square). All rectangles must have the
same circumference, but not necessarily the same shape.

a) Is it possible to divide the square into 20 rectangles, each having a
circumference of 2.5?

b) Is it possible to divide the square into 30 rectangles, each having a
circumference of 2?
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Solutions

1. Suppose that (a, b, c) is a solution. From a ≤ b ≤ c it follows that abc =
2(a+ b+ c) ≤ 6c. Dividing by c yields ab ≤ 6. We see that a = 1 or a = 2,
because from a ≥ 3 it would follow that ab ≥ a2 ≥ 9.

We first consider the case a = 2.
From ab ≤ 6 it follows that b = 2 or b = 3. In the former case, the equation
abc = 2(a + b + c) yields 4c = 8 + 2c and hence c = 4. It is easy to check
that the triple (2, 2, 4) we got is indeed a solution. In the latter case, we
have 6c = 10 + 2c, hence c = 5

2 . Because c has to be an integer, this does
not give rise to a solution.

Now we consider the case a = 1.
We get that bc = 2(1 + b + c). We can rewrite this equation to obtain
(b − 2)(c − 2) = 6. Remark that b − 2 cannot be negative (and hence
also c − 2 cannot be negative). Otherwise, we would have b = 1, yielding
(1−2)(c−2) = 6, from which it would follow that c = −4. However, c has
to be positive.
There are only two ways to write 6 as a product of two non-negative
integers, namely 6 = 1×6 and 6 = 2×3. This gives rise to two possibilities:
b − 2 = 1 and c − 2 = 6, or b − 2 = 2 and c − 2 = 3. It is easy to check
that the corresponding triples (1, 3, 8) and (1, 4, 5) are indeed solutions.

Thus, the only solutions are (2, 2, 4), (1, 3, 8), and (1, 4, 5). �

2.

A B

CD

G

H

Version for junior students
We know that ∠ABH = ∠CBG, because
these are opposite angles. Because trian-
gles ABH and CBG are isosceles, we have
∠AHB = ∠ABH and ∠CBG = ∠CGB.
Triangles ABH and CBG are similar (AA)
and hence we have ∠BAH = ∠BCG. Be-
cause ABCD is a parallelogram, we have
∠DAB = ∠DCB and hence ∠DAH =
∠DAB + ∠BAH = ∠DCB + ∠BCG = ∠DCG holds. Because ABCD is
a parallelogram, we have |CD| = |AB| = |AH| and |AD| = |BC| = |CG|.
Therefore, triangles DAH and GCD are congruent (SAS) and we have
|DH| = |DG|. In other words, triangle DGH is isosceles. �
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2.

A B

C

W

V

U

Version for senior students
Because triangle AUB is isosceles with top
angle ∠AUB = 90◦, we have ∠UAB =
45◦. In the same way, we have ∠CAW =
45◦. Combining these two equalities, we
find ∠WAU = 45◦ + ∠CAU = ∠CAB.
By the Pythagorean theorem, we find 2|AW |2 =
|AW |2+|CW |2 = |AC|2 and hence |AW | =
1
2

√
2·|AC|. In the same way we find |AU | =

1
2

√
2 · |AB|. Hence, triangles WAU and CAB are similar (SAS) with scale

factor |AW |
|AC| = 1

2

√
2 = |AU |

|AB| . In particular, we find |WU | = 1
2

√
2 · |BC| =

|CV |.
In the same way, we see that triangles V BU and CBA are similar and that
|V U | = 1

2

√
2 · |AC| = |CW |. It follows that in quadrilateral UV CW the

opposite sides have equal lengths, hence UV CW is a parallelogram. �

3. a) Suppose that the number of teams is 6. We shall derive a contradic-
tion.

First remark that the number of games equals 6×5
2 = 15. Hence, the

total number of points also equals 15.

Let team A be the (only) team with the lowest score. Team A has
at most 1 point, because if team A had 2 or more points, then each
of the other five teams would have at least 3 points, giving a total
number of points that is at least 2+3+3+3+3+3 = 17. Each team
on the second last place in the ranking has lost to team A, because
this is the only team with a lower score. Hence, team A also has at
least 1 point. We deduce that A has exactly 1 point and that there is
exactly one team, say team B, in the second last place in the ranking.

Team B has at least 2 points and the remaining four teams, teams
C, D, E and F , each have at least 3 points. The six teams together
have at least 1 + 2 + 3 + 3 + 3 + 3 = 15 points. If team B had more
than 2 points, or if any of the teams C through F had more than
3 points, then the total number of points would be greater than 15,
which is impossible. Hence, team B has exactly 2 points and teams C
through F each have exactly 3 points. The four teams C through F
each lost to a team having a lower score (team A or team B). Hence,
together, team A and team B must have won at least 4 games. This
contradicts the fact that together they have only 1 + 2 = 3 points.

�
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b) In the table below there is a possible outcome for 7 teams called A
through G. In the row corresponding to a team, crosses indicate wins
against other teams. Row 2, for example, indicates that team B won
against teams C and D and obtained a total score of 2 points. Each
team (except A) has indeed lost exactly one match against a team
with a lower score. These matches are indicated in bold.

A B C D E F G Score
A - X 1
B - X X 2
C X - X X 3
D X X - X 3
E X X X - X 4
F X X X - X 4
G X X X X - 4

�

4. a) Without loss of generality, we may assume that a < b < c. The inte-
gers a and c are not divisible by p because that would imply that ac+1
is a multiple of p plus 1, hence not divisible by p. Since bc+1 and ac+1
are both divisible by p, their difference (bc+1)−(ac+1) = (b−a)c is di-
visible by p as well. Hence, since c is not divisible by p, it must be the
case that b−a is divisible by p. Similarly, (ac+1)−(ab+1) = a(c−b)
is divisible by p and since a is not divisible by p, this implies that c−b
is divisible by p.
Thus, we find that b = a+(b−a) ≥ a+p and c = b+(c−b) ≥ a+2p.

We have a ≥ 2. Indeed, suppose that a = 1. Then, both integers
b+ 1 = ab+ 1 and b− 1 = b− a are divisible by p, which implies that
their difference (b+ 1)− (b−1) = 2 is divisible by p as well. However,
p is an odd prime and can therefore not divide 2.

Using a ≥ 2, b ≥ a + p, and c ≥ a + 2p, we conclude that

a + b + c

3
≥ a + (a + p) + (a + 2p)

3
= p + a ≥ p + 2.

�
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b) Again, we may assume that a < b < c. In part a) we have seen

that a+b+c
3 ≥ a+(a+p)+(a+2p)

3 = p + a ≥ p + 2. We can only have
a+b+c

3 = p + 2 if b = a + p, c = a + 2p, and a = 2. Since ab +
1 = 2(2 + p) + 1 = 2p + 5 must be divisible by p, it follows that
5 is divisible by p. We conclude that p = 5, b = 7, and c = 12.
The quadruple (p, a, b, c) = (5, 2, 7, 12) is indeed a Leiden quadruple,
because ab + 1 = 15, ac + 1 = 25, and bc + 1 = 85 are all divisible by
p.

We conclude that p = 5 is the only number for which there is a Leiden
quadruple (p, a, b, c) that satisfies a+b+c

3 = p + 2. �

5. a) Consider a rectangle with sides of length a ≤ b inside the square.
Since b ≤ 1 and 2a + 2b = 5

2 hold, we see that a ≥ 1
4 . The area of

the rectangle equals ab and is therefore at least 1
4 ×

1
4 = 1

16 . Hence,
we can have no more than 16 rectangles inside the square without
creating overlaps. �

b) A solution is sketched in the figure below. The four outer rectangles,
A through D, are equal with the shorter side having length x, and
the longer side having length 1 − x. Together they leave uncovered
a square area with sides of length 1 − 2x. This area is then tiled by
26 equal rectangles. These have sides of length 1− 2x and 1−2x

26 , and
therefore have a circumference of 54

26 (1− 2x). To obtain a circumfer-
ence of length 2, we take x = 1

54 .

1−

25

26

.

.

.

1

2

3

24

B

C

x

x A

D

�
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BxMO/EGMO Team Selection Test, March 2015

Problems

1. Let m and n be positive integers such that 5m + n is a divisor of 5n + m.
Prove that m is a divisor of n.

2. Given are positive integers r and k and an infinite sequence of positive
integers a1 ≤ a2 ≤ . . . such that r

ar
= k + 1. Prove that there is a t

satisfying t
at

= k.

3. Let n ≥ 2 be a positive integer. Each square of an n×n-board is coloured
red or blue. We put dominoes on the board, each covering two squares
of the board. A domino is called even if it lies on two red or two blue
squares and colourful if it lies on a red and a blue square. Find the largest
positive integer k having the following property: regardless of how the
red/blue-colouring of the board is done, it is always possible to put k non-
overlapping dominoes on the board that are either all even or all colourful.

4. In a triangle ABC the point D is the intersection of the interior angle
bisector of ∠BAC and side BC. Let P be the second intersection point
of the exterior angle bisector of ∠BAC with the circumcircle of 4ABC.
A circle through A and P intersects line segment BP internally in E and
line segment CP internally in F . Prove that ∠DEP = ∠DFP .

5. Find all functions f : R→ R satisfying

(x2 + y2)f(xy) = f(x)f(y)f(x2 + y2)

for all real numbers x and y.
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Solutions

1. There is a positive integer k with (5m+n)k = 5n+m. Hence, 5km−m =
5n−kn, or (5k−1)m = (5−k)n. The left hand side is positive, hence also
the right hand side is positive, which yields k < 5. If k = 1, then 4m = 4n,
hence m = n, hence m | n. If k = 2, then 9m = 3n, hence 3m = n, hence
m | n. If k = 3, then 14m = 2n, hence 7m = n, hence m | n. If k = 4,
then 19m = n, hence m | n. We conclude that in all cases we have that
m | n. �

2. We will prove this by contradiction. Suppose that such a t does not exist.
If ak = 1, then k

ak
= k would hold, contradicting our assumption. Hence,

ak ≥ 2. We will now prove by induction to i that aik ≥ i + 1. We just
proved the base case. Now suppose that for certain i ≥ 1 we have that
aik ≥ i+ 1. Then we also have that a(i+1)k ≥ i+ 1. If a(i+1)k = i+ 1, then
(i+1)k
a(i+1)k

= k, which is a contradiction. Hence, a(i+1)k ≥ i + 2. This finishes

the induction. Now take i = ar, then we have aark ≥ ar + 1. Moreover,
because r = ar(k + 1) we have ar = aar(k+1) ≥ aark ≥ ar + 1, which is a
contradiction. �

3. We will prove that k = bn
2

4 c is the largest possible integer.

Suppose that n is even. Then it is possible to cover the board with n2

2

dominoes (without considering the colours). Because there are n2

2 domi-

noes, each of which is either colourful or even, there are at least bn
2

4 c = n2

4

colourful or at least bn
2

4 c = n2

4 even dominoes.

When n is odd, we can cover the board with n2−1
2 dominoes. (Notice

that this number is an even integer.) Of these dominoes either at least
n2−1

4 = bn
2

4 c are colourful, or at least n2−1
4 = bn

2

4 c are even. This proves

that it is always possible to put at least bn
2

4 c colourful or at least bn
2

4 c
even dominoes on the board.

We will now prove that it is possible to create a colouring of the board

with blue and red squares, such that no more than bn
2

4 c even and no more

than bn
2

4 c colourful dominoes can be put on the board.

Colour the squares of the board in the colours white and black like the
squares on a chess board, such that the lowerleft square is white. If n is

even, there are equally many white as black square, namely n2

2 . If n is
odd, there is one black square less and the number of black squares equals
n2−1

2 = bn
2

2 c. In both cases this is an even number of squares, as for odd n
we have that n2 ≡ 1 mod 4. Now colour half of the black squares red and
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all the other squares blue. Then there are bn
2

4 c red squares, hence we can

put at most bn
2

4 c non-overlapping colourful dominoes on the board as each
of these dominoes covers one red square. An even domino cannot cover
two red squares, because there are no pairs of adjacent squares coloured
red. Hence, it must cover two blue squares. One of these blue squares must
have been black, hence the number of even dominoes is at most the number

of black-blue squares and that is bn
2

4 c. Hence of both the colourful as the

even dominoes we can put at most bn
2

4 c simultaneously on the board.

We conclude that the maximum k is indeed k = bn
2

4 c. �

4. We consider the configuration in which the points A, C, B, and P lie in
that order on the circumcircle. The other case is analogous.

By the inscribed angle theorem for the circumcircle of 4ABC, we have

∠ABE = ∠ABP = ∠ACP = ∠ACF.

Moreover, by the inscribed angle theorem for the circle through A, P , E,
and F :

∠AEB = 180◦ − ∠AEP = 180◦ − ∠AFP = ∠AFC.

We therefore see (AA) that 4ABE ∼ 4ACF . From this, it follows that

|AB|
|AC|

=
|BE|
|CF |

.

The angle bisector theorem then implies that

|AB|
|AC|

=
|DB|
|DC|

, so therefore
|BE|
|CF |

=
|DB|
|DC|

. (1)

Choose Z on PA such that A lies between P and Z. As AP is the external
angle bisector of ∠BAC, we have ∠PAB = ∠ZAC = 180◦ − ∠PAC. So
using the inscribed angle theorem and the fact that ACBP is a cyclic
quadrilateral, we see that

∠DCF = ∠PCB = ∠PAB = 180◦ − ∠PAC = ∠PBC = ∠EBD.

If we combine this with (1), we obtain 4BED ∼ 4CFD (SAS). Therefore
∠BED = ∠CFD, hence we have ∠DEP = 180◦ − ∠BED = 180◦ −
∠CFD = ∠DFP . �
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5. Substituting x = y = 0 gives 0 = f(0)3, so f(0) = 0. We consider two
more cases; either f has another zero, or f has no other zeroes. In the first
case there is some a 6= 0 such that f(a) = 0. Substituting x = a then gives
(a2 + y2)f(ay) = 0. As a2 + y2 > 0 (since a 6= 0) we find that f(ay) = 0
for all y. As ay can attain all values in R, it follows that f(x) = 0 for all x;
i.e. f is the constant function with value 0. Note that this function indeed
satisfies the given equation.

So now consider the second case, in which f(x) 6= 0 for all x 6= 0. Substi-
tuting x 6= 0 and y = 1 then gives (x2 + 1)f(x) = f(x)f(1)f(x2 + 1) and
f(x) 6= 0, so we can divide this equation by f(x). Therefore (x2 + 1) =

f(1)f(x2 + 1). Let c = f(1). Note that c 6= 0, so f(x2 + 1) = x2+1
c . Since

x2 + 1 attains all reals that are at least 1, we find f(x) = x
c for all x > 1.

Substituting x = y = 2 now gives (4 + 4)f(4) = f(2)f(2)f(4 + 4). Since
we know the values f(x) takes for x > 1, we know the values of f(2), f(4),
and f(8). Therefore 8 · 4

c = 2
c ·

2
c ·

8
c , or equivalently, 1

c = 1
c3 . We deduce

that c2 = 1, so c = 1 or c = −1. As c2 = 1, it follows that f(x) = cx for
all x > 1.

Let x > 1, and substitute y = 1
x . This gives (x2+ 1

x2 )f(1) = f(x)f( 1
x )f(x2+

1
x2 ). Since x > 1, we have x2 + 1

x2 > 1, so we deduce that (x2 + 1
x2 )c = xc ·

f( 1
x )·c(x2+ 1

x2 ), or equivalently, 1 = xc·f( 1
x ). Therefore f( 1

x ) = 1
xc = c· 1x .

We deduce that f(x) = cx for all x > 0 with x 6= 1. Since we also have
f(1) = c, it follows that f(x) = cx for all x > 0.

Substituting x = y = −1 gives 2f(1) = f(−1)2f(2). Since f(1) = c
and f(2) = 2c, it follows that 2c = f(−1)2 · 2c, so since c 6= 0 we have
f(−1)2 = 1. Therefore either f(−1) = 1 or f(−1) = −1.

Let x > 0. Substituting y = −1 then gives (x2+1)f(−x) = f(x)f(−1)f(x2+
1), so (x2 + 1)f(−x) = cx · f(−1) · c(x2 + 1), or equivalently, f(−x) =
c2xf(−1) = xf(−1). Let d = f(−1). Then f(x) = −dx for all x < 0,
where d2 = 1.

So aside from f(x) = 0 there are four more possible solutions, namely
f(x) = x, f(x) = −x, f(x) = |x|, and f(x) = −|x|. We first check
f(x) = tx with t = ±1. The left hand side then reads (x2 + y2) · txy, and
the right hand side then reads tx · ty · t(x2 + y2). As t2 = 1, the left hand
side and the right hand side are equal, so these two functions are indeed
solutions of the functional equation.

Next, we check the two functions f(x) = t|x|, with t = ±1. Now the left
hand side reads (x2 + y2) · t|xy|, and the right hand side reads t|x| · t|y| ·
t|x2 +y2|. Since x2 +y2 = |x2 +y2|, |xy| = |x||y|, and t2 = 1, the left hand
side and the right hand side are equal. So these two functions are indeed
solutions of the functional equations. Therefore there are five solutions;
f(x) = 0, f(x) = x, f(x) = −x, f(x) = |x| and f(x) = −|x|. �
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IMO Team Selection Test 1, June 2015

Problems

1. In a quadrilateral ABCD we have ∠A = ∠C = 90◦. Let E be a point
in the interior of ABCD. Let M be the midpoint of BE. Prove that
∠ADB = ∠EDC if and only if |MA| = |MC|.

2. Find all polynomials P (x) with real coefficients such that the polynomial

Q(x) = (x + 1)P (x− 1)− (x− 1)P (x)

is constant.

3. Let n be a positive integer. Consider sequences a0, a1, . . . , ak and b0, b1, . . . , bk
such that a0 = b0 = 1 and ak = bk = n and such that for all i such that
1 ≤ i ≤ k, we have that (ai, bi) is either equal to (1 + ai−1, bi−1) or
(ai−1, 1 + bi−1). Consider for 1 ≤ i ≤ k the number

ci =

{
ai if ai = ai−1,

bi if bi = bi−1.

Show that c1 + c2 + · · ·+ cn = n2 − 1.

4. Let Γ1 and Γ2 be circles – with respective centres O1 and O2 – that intersect
each other in A and B. The line O1A intersects Γ2 in A and C and the
line O2A intersects Γ1 in A and D. The line through B parallel to AD
intersects Γ1 in B and E. Suppose that O1A is parallel to DE. Show that
CD is perpendicular to O2C.

5. For a positive integer n, we define Dn as the largest integer that is a divisor
of an + (a + 1)n + (a + 2)n for all positive integers a.

1. Show that for all positive integers n, the number Dn is of the form
3k with k ≥ 0 an integer.

2. Show that for all integers k ≥ 0 there exists a positive integer n such
that Dn = 3k.
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Solutions

1. Let N be the midpoint of BD. By Thales’s Theorem the circle with
diameter BD also passes through A and C, and N is the centre of this
circle. Moreover, we have MN ‖ DE; if E doesn’t lie on BD, then MN
is a midparallel in triangle BDE, and if E does lie on BD, then MN and
DE are equal.

The claim that |AM | = |CM | is equivalent to that of M being on the
perpendicular bisector of AC. As said bisector passes through N , the
above claim is equivalent to MN ⊥ AC. Note that this is the case if and
only if DE ⊥ AC. Let T be the intersection point of DE and AC; then
|AM | = |CM | if and only if ∠DTC = 90◦.

Using the sum of angles of a triangle, we see that ∠DTC = 180◦−∠TDC−
∠DCT = 180◦ − ∠EDC − ∠DCA. We have ∠DCA = 90◦ − ∠ACB =
90◦ − ∠ADB, where we used in the last equality that ABCD is a cyclic
quadrilateral. Therefore ∠DTC = 180◦ − ∠EDC − (90◦ − ∠ADB) =
90◦−∠EDC+∠ADB. Now it immediately follows that ∠ADB = ∠EDC
if and only if ∠DTC = 90◦, which we already know to be equivalent to
|AM | = |CM |.
Note that this proof does not depend on the configuration. �

2. Suppose that P (x) is a constant polynomial, say P (x) = a with a ∈ R.
Then

Q(x) = (x + 1)a− (x− 1)a = ax + a− ax + a = 2a,

which is constant. So every constant P (x) satisfies the condition.

Now we assume that P is not constant. We can then write P (x) = anx
n +

an−1x
n−1+· · ·+a1x+a0 with n ≥ 1 and an 6= 0. Consider the xn-coefficient

in Q(x). It is the sum of the xn-coefficients of xP (x−1), P (x−1), −xP (x),
and P (x). In the first of these, this coefficient equals an−1 − nan, in the
second one it equals an, in the third one it equals −an−1 and the fourth
one it equals an. Summing these gives

an−1 − nan + an − an−1 + an = (2− n)an.

But in Q(x) this coefficient must be equal to 0. Since an 6= 0, it follows
that n = 2. Therefore P (x) = a2x

2 + a1x + a0 with a2 6= 0.

Now consider the constant coefficients of Q(x). It is the sum of the con-
stant coefficients of xP (x − 1), P (x − 1), −xP (x), and P (x). These are
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respectively 0, a2− a1 + a0, 0, and a0. These sum up to a2− a1 + 2a0. On
the other hand, we can compute Q(1);

Q(1) = 2P (0)− 0 = 2a0.

As Q(x) is constant, it follows that Q(1) is the constant coefficient of Q,
so 2a0 = a2 − a1 + 2a0. Therefore a2 = a1. So P (x) is of the form
bx2 + bx+ a = bx(x+ 1) + a with a, b ∈ R and b 6= 0. To see whether these
polynomials indeed satisfy the condition, we substitute this form for P (x).

Q(x) = (x + 1)
(
b(x− 1)x + a

)
− (x− 1)(bx(x + 1) + a)

= (x− 1)x(x + 1)b + (x + 1)a− (x− 1)x(x + 1)b− (x− 1)a

= 2a.

This is indeed constant, so all such P (x) satisfy the condition. In fact,
every constant polynomial is also of this form, with b = 0. Therefore
the polynomials satisfying the condition are precisely those of the form
P (x) = bx2 + bx + a with a, b ∈ R. �

3. We prove by induction on j that c1 + . . . + cj = ajbj − 1. For j = 1 this
reads c1 = a1b1 − 1, which is true since (a1, b1) ∈ {(1, 2), (2, 1)}. Now
suppose that c1 + · · ·+ ci−1 = ai−1bi− 1− 1. We assume without loss of
generality that (ai, bi) = (ai−1, 1 + bi−1), so that ai = ai−1 and therefore
ci = ai−1. We see that

(c1 + . . .+ci−1)+ci = (ai−1bi−1−1)+ai−1 = ai−1(bi−1 +1)−1 = aibi−1,

which completes the induction argument. Substituting j = k, it now fol-
lows that c1 + · · ·+ ck = akbk − 1 = n2 − 1. �
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4. We consider only the configuration in which A, B, E, and D lie in that
order on a circle, in which O1, A, and C lie in that order on a line, and O2,
A, and D lie in that order on a line; the proof is analogous for the other
configurations.

As ABED is a cyclic quadrilateral, we have ∠BED = 180◦ − ∠DAB.
Moreover, using the parallel lines, we see that ∠BED = ∠DAO1 and as
|O1A| = |O1D|, we have ∠DAO1 = ∠ADO1. We deduce that 180◦ −
∠DAB = ∠ADO1. Therefore DO1 and AB are parallel.

We already know that ∠ADO1 = ∠DAO1. Since |O2A| = |O2C|, it follows
that ∠DAO1 = ∠O2AC = ∠O2CA. So ∠O2DO1 = ∠ADO1 = ∠O2CA =
∠O2CO1, so O1DCO2 is a cyclic quadrilateral.

The line O1O2 is the perpendicular bisector AB, therefore is also perpen-
dicular to DO1, as this line is parallel to AB. Therefore ∠O2O1D = 90◦.
As O1DCO2 is a cyclic quadrilateral, we now also have ∠O2CD = 90◦. �

5. 1. Let p be a prime and suppose that p divides Dn. Then p divides(
(a+1)n+(a+2)n+(a+3)n

)
−
(
an+(a+1)n+(a+2)n

)
= (a+3)n−an

for all positive integers a.

Substituting a = p, then it follows that p | (p + 3)n − pn, i.e. we
have (p + 3)n − pn ≡ 0 mod p. This simply reads 3n ≡ 0 mod p, so
p = 3. We deduce that Dn only contains prime factors equal to 3,
and therefore is of the form 3k with k ≥ 0 an integer.

2. For k = 0 we take n = 2. We have 12 +22 +32 = 14 and 22 +32 +42 =
29 and these two numbers are coprime, so D2 = 1. Now assume that
k ≥ 1. We show that Dn = 3k for n = 3k−1.

We first show that 1n + 2n + 3n for n = 3k−1 is divisible by 3k, but
not by 3k+1. For k = 1 we have n = 1, and indeed, we see that
1+2+3 = 6 is divisible by 3 but not by 32. For k ≥ 2 we have n > k,
so that 3n is divisible by 3k+1. So we are reduced to showing that
1 + 2n for n = 3k−1 is divisible by 3k but not by 3k+1. We show this
by induction on k. For k = 2 we have n = 3, so indeed 1 + 8 = 9 is
divisible by 9, but not by 27. Let m ≥ 2, and suppose we have proved
our claim for k = m. Let n = 3m−1. Then 1 + 2n is divisible by 3m,
but not by 3m+1. It suffices to show that 1+23m is divisible by 3m+1,
but not by 3m+2. Write 1 + 2n = 3mc with 3 - c. Then 2n = 3mc− 1,
so

1 + 23n = 1 + (3mc− 1)
3

= 33mc3 − 3 · 32mc2 + 3 · 3mc.
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Modulo 3m+2, this is congruent to 3m+1c, and since 3 - c, it follows
that this is divisible by 3m+1, but not by 3m+2, as desired. This
completes our inductive argument.

Next we show that for n = 3k−1, we have that (a+3)n−an is divisible
by 3k for all positive integers a. Again, we prove this by induction on
k. For k = 1 we have n = 1, so indeed we see that (a + 3) − a = 3
is divisible by 3 for all positive integers a. Now suppose that m ≥ 1,
and suppose that we proved our claim for k = m. Let n = 3m−1.
Then (a + 3)n − an is divisible by 3m for all positive integers a, so
we can write (a + 3)n = an + 3mc for some integer c. Taking third
powers of both sides then yields

(a + 3)3n = a3n + 3a2n · 3mc + 3an · 32mc2 + 33mc3,

so
(a + 3)3n − a3n = a2n · 3m+1c + an · 32m+1c2 + 33mc3,

which is divisible by 3m+1. This completes our inductive argument.

We have now shown for n = 3k−1 that 3k | 1n + 2n + 3n and 3k |
(a + 3)n − an for all positive integers a, from which we, by induction
on a, immediately deduce that 3k | an + (a + 1)n + (a + 2)n for all
positive integers a. Therefore 3k | Dn. As 3k+1 - 1n + 2n + 3n, we
also have 3k+1 - Dn. Therefore Dn = 3k, as desired. �
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IMO Team Selection Test 2, June 2015

Problems

1. Let a and b be two positive integers satifying gcd(a, b) = 1. Consider a
pawn standing on the grid point (x, y). A step of type A consists of moving
the pawn to one of the following grid points: (x+a, y+a), (x+a, y−a), (x−
a, y + a) or (x − a, y − a). A step of type B consists of moving the pawn
to (x + b, y + b), (x + b, y − b), (x− b, y + b) or (x− b, y − b).
Now put a pawn on (0, 0). You can make a (finite) number of steps,
alternatingly of type A and type B, starting with a step of type A. You
can make an even or odd number of steps, i.e., the last step could be of
either type A or type B. Determine the set of all grid points (x, y) that
you can reach with such a series of steps.

2. Determine all positive integers n for which there exist positive integers a1,
a2, . . . , an with

a1 + 2a2 + 3a3 + . . . + nan = 6n

and
1

a1
+

2

a2
+

3

a3
+ . . . +

n

an
= 2 +

1

n
.

3. An equilateral triangle ABC is given. On the line through B parallel to
AC there is a point D, such that D and C are on the same side of the line
AB. The perpendicular bisector of CD intersects the line AB in E. Prove
that triangle CDE is equilateral.

4. Each of the numbers 1 up to and including 2014 has to be coloured; half of
them have to be coloured red the other half blue. Then you consider the
number k of positive integer that are expressible as the sum of a red and
a blue number. Determine the maximum value of k that can be obtained.

5. Find all functions f : Z>0 → Z>0 such that f(1) = 2 and such that for
all m,n ∈ Z>0 we have that min(2m + 2n, f(m + n) + 1) is divisible by
max(f(m) + f(n),m + n).

33



Solutions

1. We will prove that the grid point (x, y) is reachable if and only if x+y ≡ 0
mod 2.

If we move the pawn from (x, y) to (x± a, y± a), then the sum of the new
coordinates equals x+ y + 2a, x+ y or x+ y− 2a, hence it is congruent to
the sum of the old coordinates modulo 2. The same holds when making a
step of type B. Because the pawn starts at (0, 0), after executing any finite
number of steps, we will have that the sum of the coordinates of the grid
point where the pawn is standing, is even. Hence, the points (x, y) with
x + y ≡ 1 mod 2 are not reachable.

Now we will show that all other points are reachable. Because gcd(a, b) =
1, there exist integers m,n with ma+nb = 1. Then we have 2ma+2nb = 2.
Of the numbers m and n one must be positive and the other negative. We
assume that m is positive. The other case is treated analogously. We will
now first make 2m steps of type A and 2m steps of type B. For the steps
of type A we choose to do m times the step (x, y) 7→ (x + a, y + a) and m
times (x, y) 7→ (x + a, y − a). For the steps of type B we choose m times
(x, y) 7→ (x + b, y + b) and m times (x, y) 7→ (x − b, y − b). The effect of
all these steps together is that the x-coordinate increased by 2ma and the
y-coordinate did not change (in face, the B-steps cancel each other). After
this we do 2|n| steps of type A and 2|n| steps of type B. For the steps of
type A we choose to do |n| times the step (x, y) 7→ (x + a, y + a) and |n|
times (x, y) 7→ (x− a, y − a). For the steps of type B we choose to do |n|
times (x, y) 7→ (x − b, y + b) and |n| times (x, y) 7→ (x − b, y − b). The
effect of all these steps together is that the x-coordinate decreased by 2|n|
and the y-coordinate did not change (in fact, now the A-steps cancel each
other). Altogether, after these 4m + 4|n| steps, we moved the pawn from
a starting point (x, y) to the point (x + 2ma − 2|n|b, y) = (x + 2, y). We
can construct an analogous series of steps that move the pawn from (x, y)
to (x, y + 2), and also analogous series of steps that move the pawn from
(x, y) to (x− 2, y) and (x, y− 2). Each of these series starts with a step of
type A and ends with a step of type B.

By combining series like these, we can move the pawn from (0, 0) to any
point (x, y) with x ≡ y ≡ 0 mod 2. Now consider a point (x, y) with
x ≡ y ≡ 1 mod 2. Because gcd(a, b) = 1, at least one of a and b is odd.
Suppose that a is odd. Then the point (x − a, y − a) is a point with two
even coordinates, to which we can construct a series of steps, ending with
a step of type B. After that, we can make a step of type A that moves the
pawn from (x− a, y− a) to (x, y). Next, suppose that a is even. Then b is
odd. The point (x− b, y − b) now has two even coordinates, hence we can
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reach this point with a series of steps ending with a step of type B. Now
we execute three more steps after this:

(x− b, y − b)
A7−→ (x− b− a, y − b− a)

B7−→ (x− a, y − a)
A7−→ (x, y).

In this way we can also reach the point (x, y).

We conclude that we can reach all points (x, y) with x+ y ≡ 0 mod 2 and
we cannot reach any other point. �

2. If we apply the inequality of the arithmetic and harmonic mean to a1, two
copies of a2, three copies of a3, . . . , n copies of an, then we find that

6n
1
2n(n + 1)

=
a1 + 2a2 + . . . + nan

1
2n(n + 1)

≥
1
2n(n + 1)

1
a1

+ 2
a2

+ . . . + n
an

=
1
2n(n + 1)

2 + 1
n

.

We have
6n

1
2n(n + 1)

=
12

n + 1
<

12

n

and
1
2n(n + 1)

2 + 1
n

=
1
2n

2(n + 1)

2n + 1
>

1
2n

2(n + 1)

2n + 2
= 1

4n
2.

Altogether we find that 12
n > 1

4n
2, or 48 > n3, which yields n ≤ 3.

For n = 1 we get a1 = 6 and 1
a1

= 3, which is a contradiction. Hence,
n = 1 is not possible.

For n = 2 we get a1 + 2a2 = 12 and 1
a1

+ 2
a2

= 2 + 1
2 . If a2 ≥ 2 we have

1
a1

+ 2
a2
≤ 1 + 1 and this is too small. Hence, we have a2 = 1, but then

we find that a1 = 12 − 2 = 10 and hence 1
a1

+ 2
a2

= 1
10 + 2, which is a

contradiction. Hence, n = 2 is impossible.

For n = 3 there is a solution, namely a1 = 6, a2 = 3 and a3 = 2. Hence,
n = 3 is possible and we conlude that n = 3 is the only solution. �

3. We consider the configuration in which E lies between A and B. The case
in which B lies between A and E is treated analogously. (Because of the
condition that D and C lie on the same side of AB, it is impossible that
A lies between B and E, hence we have treated all cases.)

As E lies on the perpendicular bisector of CD, we have |EC| = |ED|.
Hence, it is sufficient to prove that ∠CED = 60◦. First suppose that
E = B. Then we have ∠CED = ∠CBD = ∠ACB = 60◦ because of
alternating (Z) angles, hence we are done. Now suppose that E 6= B.

35



As BD is parallel to AC, we have ∠CBD = ∠ACB = 60◦ = ∠CBA.
Hence, the point E is the intersection point of the perpendicular bisector
of CD and the exterior angle bisector of ∠CBD. This means that E lies
on the circumcircle of triangle CDB. (This is a known fact, but it is
also possible to prove it as follows. Let E′ be the intersection point of the
exterior angle bisector of ∠CBD and the circumcircle of 4CBD. Because
BE′ is the exterior angle bisector, we have ∠CBE′ = 180◦ − ∠DBE′.
Hence, chords CE′ and DE′ have the same length, which means that E′

lies on the perpendicular bisector of CD.) We conclude that CEBD is a
cyclic quadrilateral. Hence, ∠CED = ∠CBD = 60◦. �

4. Let n = 2014. We shall prove that the maximum k equals 2n − 5. The
smallest number that you could possibly write as the sum of a red and a
blue number is 1 + 2 = 3 and the largest number is (n− 1) + n = 2n− 1.
Hence, there are at most 2n − 3 numbers expressible as the sum of a red
and a blue number.

Suppose that the numbers can be coloured in such a way that 2n − 3 or
2n− 4 of numbers are expressible as the sum of a red and a blue number.
Now at most one of the numbers from 4 up to and including 2n− 1 is not
expressible in such a way. We will now show that we may assume without
loss of generallity that this number is at least n + 1. Indeed, we could
make a second colouring in which a number i is blue if and only if n+1− i
is blue in the initial colouring. Then in the case of the second colouring
a number m is expressible as the sum of a red and a blue number if and
only if 2n + 2−m was expressible as the sum of a red and a blue number
in the initial colouring. Hence, if in the initial colouring a number smaller
than n+1 is not expressible as the sum of red and blue, then in the second
colouring a number greater than 2n+ 2− (n+ 1) = n+ 1 is not expressible
as the sum of red and blue.

Hence, we may assume that the numbers 3 up to and including n are
all expressible as the sum of red and blue. Because red and blue are
interchangable, we may also assume without loss of generality that 1 is
coloured blue. Because 3 is expressible as the sum of red and blue and this
can only be 3 = 1 + 2, the number 2 must be red. Now suppose that we
know that 2 up to and including l are red, for certain l with 2 ≤ l ≤ n− 2.
Then in all the possible sums a+ b = l + 2 with a, b ≥ 2 both numbers are
colored red. However, we know that we can express l + 2 as the sum of
red and blue (because l + 2 ≤ n), hence that must be 1 + (l + 1). Hence,
l + 1 is also coloured red. By induction, we now see that the numbers 2
up to and including n − 1 are all red. These are n − 2 = 2012 numbers.
However, only 1

2n = 1007 numbers are red, which is a contradiction.
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We conclude that at least two numbers of 3 up to and including 2n − 1
are not expressible as the sum of a red and a blue number. We shall now
show that we can colour the numbers in such a way that all number from
4 up to and inlcuding 2n−2 are expressible as the sum of a red and a blue
number, implying that the maximum k equals 2n− 5.

To obtain this, colour all the even numbers, except n, and also the number
1 blue. All odd numbers, except 1, and also the number n we colour red.
By adding 1 to an odd number (unequal to 1) we can obtain all even
numbers from 4 up to and inlcuding n as the sum of a red and a blue
number. By adding 2 to an odd number (unequal to 1), we can obtain all
odd numbers from 5 up to and including n + 1 as the sum of a red and a
blue number. By adding n− 1 to an even number (unequal to n), we can
obtain all odd numbers from n + 1 up to and including 2n− 3 as the sum
of a red and a blue number. By adding n to an even number (unequal to
n), we can obtain all even numbers from n + 2 up to and including 2n− 2
as the sum of a red and a blue number. Altogether, we can express all
numbers from 4 up to and including 2n− 2 as the sum of a red and a blue
number.

We conclude that the maximum k equals 2n− 5 = 4023. �

5. By substituting m = n we get that min(4n, f(2n) + 1) is divisible by
max(2f(n), 2n). That is, a number that is at most 4n is divisible by
another number, which is at least 2f(n). This yields that 4n ≥ 2f(n),
hence f(n) ≤ 2n for all n.

By substituting m = n = 1 we get that min(4, f(2) + 1) is divisible by
max(2f(1), 2) = max(4, 2) = 4. Hence, min(4, f(2) + 1) cannot by smaller
than 4, hence f(2) + 1 ≥ 4. But we have already deduced that f(2) ≤
2 · 2 = 4, hence either f(2) = 3 or f(2) = 4 holds.

First suppose that f(2) = 3. We will prove by induction to n that f(n) =
n + 1 for all n. Namely, suppose that this holds for n = r − 1 for some
r ≥ 3 and subtitute m = 1 and n = r−1. Then we get that min(2r, f(r)+
1) is divisible by max(f(1) + f(r − 1), r) = max(r + 2, r) = r + 2. As
min(2r, f(r) + 1) ≤ 2r < 2(r + 2), it holds that min(2r, f(r) + 1) = r + 2.
Because r ≥ 3, we have 2r > r + 2, hence we have f(r) + 1 = r + 2, or
f(r) = r + 1. This finishes the induction. Hence, we find the candidate
function f(n)+1. We will check immediately whether this function satisfies
the conditions. For all m,n ∈ N we have that min(2m+2n, f(m+n)+1) =
min(2m+2n,m+n+2) = m+n+2 as m,n ≥ 1, and max(f(m)+f(n),m+
n) = max(m + n + 2,m + n) = m + n + 2. The former is divisible by the
latter (as it equals the latter), hence this function satisfies.
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Now suppose that f(2) = 4. We will prove by induction to n that f(n) =
2n for all n. Namely, suppose that this holds for n = r − 1 for some
r ≥ 4. We will prove that also f(r) = 2r holds. First substitute m =
1 and n = r − 1. Then we find that min(2r, f(r) + 1) is divisible by
max(f(1)+f(r−1), 1+r−1) = max(2r, r) = 2r. Hence, min(2r, f(r)+1)
cannot be smaller than 2r, hence f(r) ≥ 2r−1. However, we already knew
that f(r) ≤ 2r, hence f(r) ∈ {2r−1, 2r}. Suppose that f(r) = 2r−1. Then
substitute m = 1 and n = r. Then we find that min(2(r + 1), f(r + 1) + 1)
is divisible by max(f(1) + f(r), 1 + r) = max(2 + 2r − 1, r + 1) = 2r + 1.
Because 2r + 1 - 2(r + 1), the minimum does not equal 2(r + 1), hence we
have f(r+1)+1 < 2r+2 and, moreover, it must also be divisible by 2r+1,
hence f(r + 1) = 2r. Now also substitute m = 2 and n = r − 1. Then we
find that min(2(r+1), f(r+1)+1) = min(2r+2, 2r+1) = 2r+1 is divisible
by max(f(2) + f(r−1), 1 + r) = max(4 + 2r−2, r+ 1) = 2r+ 2, which is a
contradiction,. We conclude that f(r) = 2r, which finishes the induction.
Hence, we find the candidate function f(n) = 2n for all n. We will check
whether this function satisfies the conditions. In this case, for all m,n we
have that min(2m+2n, f(m+n)+1) = min(2m+2n, 2m+2n+1) = 2m+2n
and max(f(m) + f(n),m + n) = max(2m + 2n,m + n) = 2m + 2n. The
former is divisible by the latter (because it equals the latter), hence this
function satisfies the conditions.

We conclude that there are exactly two solutions: the function given by
f(n) = n + 1 for all n and the function given by f(n) = 2n for all n. �
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Junior Mathematical Olympiad, October 2014

Problems

Part 1

1. Note that 555555 : 7 = 79365. Consider the number 55 · · · 55 consisting of
1000 fives.
What is the remainder of this number on division by 7?

A) 2 B) 3 C) 4 D) 5 E) 6

2. A pawn is placed on a board consisting of ten squares, numbered from 1
up to 10. The pawn is allowed to move from the square it is on to a square
that either has a number that is two less, or a number that is twice as
large. The pawn wants to make a sequence of moves that visits as many
squares as possible. It may freely choose its starting point. It may visit
squares multiple times. How many squares can the pawn visit in a single
sequence of moves?

A) 6 B) 7 C) 8 D) 9 E) 10

3.

1 2

3

4

5

6 7

8

9

10

11

12

Jan has huge square table of which the cells are
numbered as in the figure. Which of the follow-
ing five numbers does not occur in the leftmost
column?

A) 55 B) 105 C) 172 D) 212 E) 300

4.

9

3 8

72 9

4 1

0

Birgit has a combination lock that consists of
three rings next to one another, each having the
digits 0 up to 9 in order. She turns the three rings
until her secret combination is visible. Aside from
this combination, there are 9 more combinations
visible on the three rings. Coincidentally, one of
these numbers is three times the secret combination.
What is Birgit’s secret combination?

A) 106 B) 123 C) 272 D) 318 E) 328
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5. In a triangle ABC, we have ∠A = 84◦. Moreover, D is a point on the line
segment AB such that ∠D1 = 3 ·∠C2 and such that the line segments DC
and DB have equal lengths.
What is ∠C1?

A) 27◦ B) 28◦ C) 30◦ D) 32◦ E) 36◦

C

1
2

A

84◦

B

D1

2

6. A piece of apple pie had been stolen, and five children are being questioned
on this. They all know who the culprit is, but not all of them are speaking
the truth. Whenever one of the children lies, the next one will feel so
guilty about this that he or she will tell the truth. The children make the
following claims in the order shown:

• Asim: “Coen and I both didn’t do it.”

• Bob: “Either Coen or Dilan is the culprit.”

• Coen: “Eva and I both didn’t do it.”

• Dilan: “Asim is the culprit.”

• Eva: “At least two of Asim, Bob, Coen, and Dilan lied.”

Who stole the apple pie?

A) Asim B) Bob C) Coen D) Dilan E) Eva

7. Consider the numbers a = (34)5, b = (44)4, and c = (54)3. If you sort a, b
and c from smallest to largest, you obtain:

A) a < b < c B) a < c < b C) b < a < c
D) c < a < b E) c < b < a
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8. Max has a lot of white and red paint. He starts with a 2-litre bucket in
which one litre of red paint and one litre of white paint. Max now repeats
the following step a number of times.

Step. Max pours precisely one litre out of the bucket, into a large con-
tainer. Next, he fills the bucket back up to 2 litres of paint, using
either the white paint, or the red paint. After this, he mixes the
paint in the bucket.

After a number of steps, the percentage of red paint in the bucket must
be between 83 and 84 percent. What is the smallest number of steps Max
needs to attain this?

A) 5 B) 6 C) 7
D) 8 E) Max cannot obtain such a percentage.

Part 2

1. A member of a group of ten friends buys a bag of candy to share among
the group. First he himself, who likes candy more than the rest of the
group, takes a quarter of the candy. Another member grabs 30 pieces of
candy. A third member grabs 10% of what is left. The remainder of the
group distributes the remainder of the candy evenly. The total number of
pieces of candy was less than 500 and everyone got at least one piece of
candy.
How many pieces of candy were there in the bag?

2. There are 36 balls, numbered from 1 up to 36. We want to put these into
boxes in such a way that the following two conditions are satisfied:

(1) Every box contains at least 2 balls.

(2) Whenever you pick up two balls from a box, the sum of the two
numbers of these balls is always a multiple of 3.

What is the smallest number of boxes for which this is possible?
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3. We are given a square ABCD. A line is drawn through A that intersects
the segment BC in E, and the line through C and D in F . The ratio of
the lengths of the segments BE and EC is 1 : 2. The area of the grey area
is 60.
What is the area of the square?

A B

D C

E

F

4. We want to exchange a 200-euro bill for bills of 5, 10, and 20 euros. One
possibility is to exchange it for 5 bills of 20 euros, 6 bills of 10 euros, and
8 bills of 5 euros. Another possibility is to exchange it for 20 bills of 10
euros.
How many possibilities are there to exchange a 200-euro bill for bills of 5,
10, and 20 euros?

5. By stacking small cubes (all of the same size) neatly, a larger cube is
formed. Two small cubes with faces placed against one another are called
neighbours. So a cube can have at most six neighbours. The number of
cubes having precisely four neighbours is 96.
How many small cubes are there having precisely five neighbours?

6. Michelle colours each of the numbers from 1 up to 2014. The first two
numbers (1 and 2) are coloured red, the next two (3 and 4) are coloured
white, the following two (5 and 6) are coloured blue, the two following
those are coloured red, the two after those are coloured white, the two
after that are coloured blue, and so on and so forth. Michelle then sums
all blue numbers, and subtracts from that the sum of all red numbers.
What is the result?

42



7. The figure below represents a puzzle. The goal is to fill each of the 16 cells
with a number from 1 up to 4. This has to be done in such a way that in
each column and in each row, the four numbers are distinct. Moreover, in
each of the four 2×2-squares, the four numbers have to be distinct as well.
Finally, the four numbers in the grey squares also need to be distinct.
How many solutions does this puzzle have?

1

2

3

4

A B C D

8. Mies has drawn a regular hexagon with area 1. She notices that the mid-
points of the six sides also form a regular hexagon.
What is the area of this small hexagon?
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Solutions

Part 1

1. C) 4 5. A) 27◦

2. D) 9 6. B) Bob

3. D) 212 7. D) c < a < b

4. E) 328 8. B) 6

Part 2

1. 320 5. 384

2. 13 6. −1343

3. 36 7. 168

4. 121 8. 3
4
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