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Introduction

The selection process for IMO 2023 in Japan started with a first round in
January 2022, held locally at all participating schools. This first round
consists of eight multiple choice questions and four open questions, to be
solved within 2 hours. This year 4388 students from 267 secondary schools
participated in the first round.

The 782 best students were invited to the second round, which was held
at twelve universities throughout the country in March 2022. This round
consists of five open questions, and two problems for which the students
have to give extensive solutions and proofs. The contest lasts 2.5 hours.

The 120 best students were invited to the final round, together with some
outstanding participants in the Kangaroo math contest or the Pythagoras
Olympiad. In total, 146 students were invited. In the preceding months,
we organize four training sessions at each of the universities to help them
prepare for their participation in the final round.

The final, in September, contains five problems for which the students has
to give extensive solutions and proofs. They are allowed 3 hours for this
round. After the prizes had been awarded in the beginning of November,
the Dutch Mathematical Olympiad concluded its 61st edition 2022.

The 31 most outstanding candidates of the Dutch Mathematical Olympiad
were invited to an intensive seven-month training programme. The students
met twice for a three-day training camp, three times for a single day, and
finally for a six-day training camp in the beginning of June. They also
worked on weekly problem sets to be sent in to a personal trainer by email.

In February a team of four girls was chosen from the training group to
represent the Netherlands in April at the EGMO in Slovenia. At this event
the Dutch team won four bronze medals. For more information about the
EGMO (including the 2023 paper), see www.egmo.org.

In March a selection test of 3.5 hours was held to determine the ten students
from the training program which are sent to the Benelux Mathematical
Olympiad (BxMO) held in May. One of the Dutch team members, Lance
Bakker, managed to receive a full score here. For more information about
the BxMO (including the 2023 paper), see www.bxmo.org.

Begin June the team for the International Mathematical Olympiad was
selected by three team selection tests on three consecutive days, each lasting
4 hours. In addition to the six team members a seventh, young, promising
student was selected to accompany the team to the IMO as an observer C.
Two weeks later, the team had a training camp in Leiden and Tokyo from
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June 27 to July 6.

For younger students the Junior Mathematical Olympiad was held in Septem-
ber 2022 at the VU University Amsterdam. The students invited to par-
ticipate in this event were the 100 best students of grade 2 and grade 3
of the popular Kangaroo math contest. The competition consisted of two
one-hour parts, one with eight multiple choice questions and one with eight
open questions.

We are grateful to Jinbi Jin and Raymond van Bommel for the composition
of this booklet and the translation into English of most of the problems and
the solutions.

Dutch delegation

The Dutch team for 64th edition of IMO 2023 in Japan consists of

• Lance Bakker (16 years old)
– silver medal at BxMO 2022, gold medal at BxMO 2023
– honourable mention at IMO 2022

• Bas Capel (17 years old)
– bronze medal at BxMO 2023

• Daan de Groot (18 years old)
– silver medal at BxMO 2022, bronze medal at BxMO 2023

• Hylke Hoogeveen (17 years old)
– bronze medal at BxMO 2020, honourable mention at BxMO 2021
– bronze medal at IMO 2021

• Mads Kok (16 years old)
– silver medal at BxMO 2022 and 2023
– honourable mention at IMO 2022

• Yanniek Nitescu (17 years old)
– bronze medal at BxMO 2022 and 2023

Also part of the IMO delegation, but not officially part of the IMO team, is:

• Allie Zong (17 years old)
– bronze medal at EGMO 2021 and 2023; silver medal at EGMO

2022

The team is coached by

• Quintijn Puite (team leader), Eindhoven University of Technology

• Johan Konter (deputy leader), Leiden University

• Nils Van de Berg (observer B), Utrecht University
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First Round, January 2022

Problems

A-problems

1. A group of islands consists of a large, a medium and a small island. The
total area of the three islands together is 23 km2. The difference between
the areas of the large island and the medium island turns out to be exactly
1 km2 more than the area of the small island.

How many km2 is the area of the large island?

A) 10 B) 11 C) 12 D) 13 E) 14

2.

P

Kevin draws a point P on a large piece of paper.
Then he draws, one by one, straight lines through P .

How many lines does Kevin have to draw at least to
make sure that on the piece of paper there are two
lines that make an angle of less than 13 degrees?

A) 9 B) 13 C) 14 D) 27 E) 28

3. Sofie and her grandmother both have their birthday on 1 January. In six
consecutive years, the age of grandma is an integer multiple of the age of
her granddaughter Sofie. In the seventh year this is not the case. A few
years later the age of grandma is again an integer multiple of the age of
Sofie.

How old can grandma be by then?

A) 63 B) 66 C) 70 D) 90 E) 91

4. When you add the digits of the number 2022, you get 6.

How many 4-digit numbers are there (including 2022) such that, when you
add the digits, you get 6? The numbers are not allowed to start with the
digit 0.

A) 40 B) 45 C) 50 D) 55 E) 56
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5.

B A

C

D E

F

P

Q

R

Consider the equilateral triangle PQR. Inside this
triangle the regular hexagon ABCDEF is drawn.
Points B, D and F are the midpoints of the sides of
the triangle PQR. The area of the pentagonQBAFR
is equal to 1.

What is the area of the triangle PQR?

A) 11
10 B) 7

6 C) 6
5 D) 5

4 E) 4
3

6. A box contains red, white and blue balls. The number of red balls is an
even number and the total number of balls in the box is less than 100. The
number of white and blue balls together is exactly 4 times the number of
red balls. The number of red and blue balls together is exactly 6 times the
number of white balls.

How many balls are in the box?

A) 28 B) 30 C) 35 D) 70 E) 84

7. In a tournament with the four teams A, B, C and D, every team played
against every other team in three rounds of two simultaneous games. No
team won or lost all their games and no game ended in a draw. It is known
that team A won in the first and third round. Also, team C won in the first
round and team D lost in the second round. Five people make a statement
about the tournament, but only one of them is telling the truth.

Which statement is true?

A) A and B played against each other in round 1
B) C won against B
C) A and D played against each other in round 3
D) D won against A
E) B and C played against each other in round 2
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8. Michael prints the net in the figure twice on cardboard
and makes it into two identical dice, such that the
pips are visible on the outside of the dice. He puts
one dice on top of the other to make a small tower.
The front face of the lower dice shows 3 pips. The
total number of pips on the two faces touching in the
middle is equal to 9. The total number of pips on
the back of the small tower is three times the total
number of pips on the right side of the small tower.

How many pips are on the face that touches the ground?

A) 1 B) 2 C) 4 D) 5 E) 6

B-problems
The answer to each B-problem is a number.

1. Line up the numbers 1 to 15 such that if you add any two numbers that
are next to each other, you get a square number.

What do you get if you add the first and last number from the line?

2. In the figure below the large square has sides of length 6. The circle is
tangent to all sides of the large square. The four triangles are exactly the
same right angled triangles and are directly next to each other; the small
square they enclose has its vertices exactly on the circle.

What is the area of the grey triangle?
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3. At a congress all attendees are either a mathematician or a biologist and
there is no one that is both. The mathematicians all know each other and
each of them knows four of the biologists. The biologists also all know each
other and each of them knows nine of the mathematicians. It turns out
that every mathematician knows twice as many people as every biologist.
(If person A knows person B, then person B also knows person A.)

How many mathematicians are at the congress?

4. On an 8× 8-board there is a beetle on every square. At a certain moment
the distribution of the beetles on the board changes: every beetle crawls
either one square to the left or one square diagonally to the bottom right.
If a beetle can make neither of the two movements without falling off the
board, it stays on its square.

At most how many squares can end up empty by this change?

Solutions

A-problems

1. C) 12 5. C) 6
5

2. C) 14 6. D) 70

3. C) 70 7. B) C won against B

4. E) 56 8. A) 1

B-problems

1. 17

2. 4 1
2

3. 117

4. 29
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Second Round, March 2022

Problems

B-problems
The answer to each B-problem is a number.

B1.

4 5 3

1 2 6

1 2

1 4

3 3 3

In a 3×2 rectangle, we put the numbers 1 to 6 in
the squares in such a way that each number occurs
exactly once. The score of such a distribution is
determined as follows: for each two adjacent squares
we compute the difference between their two numbers
and we add up all these differences. In the example on the right, the
differences are indicated in red. This distribution has score 17.

What is the smallest possible score of such a distribution?

B2. For how many integers n with 1 ≤ n ≤ 800 is the number 8n+ 1 a square?

B3. We start with a square with side length 1. During the first minute, small
squares with side length 1

3 grow on the middle of the vertical sides. During
the next minute, on the middle of each vertical line segment in the new
figure, a new small square grows, whose sides have length 1

3 of these line
segments. Below you can see the situation after 0, 1, and 2 minutes.

This process continues like this. Each minute, on the middle of each vertical
line segment a new square grows, whose sides are 1

3 of the length of that
line segment. After one hour this process of new squares growing on the
figure has happened 60 times.

What is the circumference of the figure after one hour?

B4. The candy store sells chocolates in the flavours white, milk, and dark. You
can buy them in three types of coloured boxes. The three boxes have the
following contents:
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• Gold: 2 white, 3 milk, 1 dark,

• Silver: 1 white, 2 milk, 4 dark,

• Bronze: 5 white, 1 milk, 2 dark.

Lavinia buys some boxes of chocolates (at least one) and when she gets
home, it turns out she has exactly the same number of chocolates of each
flavour.

At least how many boxes did Lavinia buy?

B5.

A B

C

D2 3

In triangle ABC, angle A is a right angle. A point D
lies on line segment AB in such a way that the angles
ACD and BCD are equal. Moreover, |AD| = 2 and
|BD| = 3.

What is the length of line segment CD?

C-problems For the C-problems not only the answer is important; you also have to

describe the way you solved the problem.

C1. Alicia writes down a distinct integers on a piece of paper and Britt writes
down b distinct integers on another piece of paper. Alicia wrote down at
least one integer that Britt did not write down, and Britt wrote at least
one integer down that Alicia did not write down. Vera counts the number
of distinct integers on the two pieces of paper; let this number of distinct
integers be v. Daan counts how many of the integers that have been written
down by Alicia, have also been written down by Britt; let d be this number.
For example, if Alicia wrote down 1, 2, and 5, and Britt wrote down 2, 5,
7, and 8, then we have a = 3 and b = 4 while v = 5 and d = 2.

(a) Find an example for which a = b = 2022 and a · b = d · (v + d).

(b) Is is possible that a · b = d · (v + 4)? Give an example or prove that it
is impossible.

(c) Is it possible that a · b = d · v? Give an example or prove that it is
impossible.

C2. We call a positive integer sunny if it has four digits and if moreover each
of the two digits on the outside is exactly 1 larger than the digit next to it.
The numbers 8723 and 1001 for example are sunny, but 1234 and 87245
are not.
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(a) How many sunny numbers are there such that twice the number is
again a sunny number?

(b) Prove that every sunny number greater than 2000 is divisible by a
three-digit number with a 9 in the middle.

Solutions

B-problems

1. 11 3. 84 5. 2
√

6

2. 39 4. 20

C-problems

C1. We first note that there is a useful relation between a, b, d, and v. The
total number of integers on the two pieces of paper is a+ b, the number of
integers on Alicia’s piece of paper plus the number of integers on Britt’s
piece of paper. This, however, also equals v+d: the total number of distinct
integers, plus the total number of integers that have been written down
twice. Hence, we get that a+ b = v + d.

(a) We choose a = b = 2022 and look for a solution to a · b = d · (v + d).
We use the fact that a+ b = v + d. This means that we are looking
for solutions to a · b = d · (a+ b). If we substitute a = b = 2022, then
we find that 2022 · 2022 = d(2022 + 2022) = d · 2 · 2022, so d = 1011.
Together with a+ b = v + d, we find that 2022 + 2022 = v + 1011, so
v = 3033. This situation happens for example if Alicia writes down
the numbers 1 to 2022, and Britt writes down the numbers 1012 to
3033. �

(b) With a little bit of trying, and by choosing d not too large, we find
that a = b = 3, d = 1, and v = 5 is a solution: 3 · 3 = 1 · (5 + 4). The
numbers also satisfy the equation a+ b = v + d. This situation can
occur if Alicia writes down the numbers 1, 2, and 3, and Britt writes
down the numbers 3, 4, and 5, for example. �

(c) Suppose that there are numbers such that a · b = v · d. We already
deduced that a+ b = v + d, or v = a+ b− d. Substituting this yields

ab = vd = (a+ b− d)d = ad+ bd− d2.

If we now subtract ad from both sides of this equation, we find
ab− ad = bd− d2, so a(b− d) = d(b− d). Because Britt wrote down
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at least one number that Alicia did not write down, we have b > d.
Therefore, we can divide the equation a(b − d) = d(b − d) by the
positive number b − d, and we find that a = d. On the other hand,
Alicia wrote down at least one number that Britt did not write down,
hence a > d. This gives a contradiction and hence there cannot exist
numbers such that a · b = v · d. �

C2. (a) First we look at the last two digits of a sunny number. There are nine
possibilities for these: 01, 12, 23, 34, 45, 56, 67, 78, and 89. If we then
look at twice a sunny number, we get the following nine possibilities,
respectively, for the last two digits: 02, 24, 46, 68, 90, 12, 34, 56, and
78. We see that twice a number can only be sunny if the original
sunny number ends in 56, 67, 78, or 89. In all four cases we see that
by doubling a 1 carries over to the hundreds.

Now we look at the first two digits of a sunny number. The nine
possibilities are 10, 21, 32, 43, 54, 65, 76, 87, and 98. If the first
digit is 5 or higher, twice the number has more than four digits so
it can never be sunny. The possibilities 10, 21, 32, and 43 are left.
After doubling and adding the carried over 1 to the hundreds we get,
respectively, 21, 43, 65, and 87. In all cases twice a sunny number is
a sunny number if the first digits of the original sunny number are
10, 21, 32, or 43 and the last two digits are 56, 67, 78, or 89. In total
there are 4 · 4 = 16 combinations to be made, hence 16 sunny numbers
for which twice the number is again sunny. �

(b) Denote by a and b the two middle digits of a sunny number. Then
the two digits on the outside are a + 1 and b + 1, so the number is
1000(a+ 1) + 100a+ 10b+ (b+ 1) = 1100a+ 11b+ 1001. This number
is divisible by 11 because 1100a as well as 11b as well as 1001 = 91 · 11
is divisible by 11. After division by 11 we get the number 100a+b+91.
Now b is at most 8, because b+1 has to be a digit as well. Furthermore
a is at least 1, because the number we started with has to be at least
2000. So we see that 100a + b + 91 = 100a + 10 · 9 + (b + 1) is the
three-digit number with digits a, 9, and b+ 1, a three-digit number
with a 9 in the middle. �
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Final Round, September 2022

Problems

1. A positive integer n is called divisor primary if for every positive divisor d
of n at least one of the numbers d− 1 and d+ 1 is prime. For example, 8
is divisor primary, because its positive divisors 1, 2, 4, and 8 each differ by
1 from a prime number (2, 3, 5, and 7, respectively), while 9 is not divisor
primary, because the divisor 9 does not differ by 1 from a prime number
(both 8 and 10 are composite).

Determine the largest divisor primary number.

2. A set consisting of at least two distinct positive integers is called centenary
if its greatest element is 100. We will consider the average of all numbers
in a centenary set, which we will call the average of the set. For example,
the average of the centenary set {1, 2, 20, 100} is 123

4 and the average of the
centenary set {74, 90, 100} is 88.

Determine all integers that can occur as the average of a centenary set.

3. Given a positive integer c, we construct a sequence of fractions a1, a2, a3, . . .
as follows:

• a1 = c
c+1 ;

• to get an, we take an−1 (in its most simplified form, with both the
numerator and denominator chosen to be positive) and we add 2 to
the numerator and 3 to the denominator. Then we simplify the result
again as much as possible, with positive numerator and denominator.

For example, if we take c = 20, then a1 = 20
21 and a2 = 22

24 = 11
12 . Then we

find that a3 = 13
15 (which is already simplified) and a4 = 15

18 = 5
6 .

(a) Let c = 10, hence a1 = 10
11 . Determine the largest n for which a

simplification is needed in the construction of an.

(b) Let c = 99, hence a1 = 99
100 . Determine whether a simplification is

needed somewhere in the sequence.

(c) Find two values of c for which in the first step of the construction of
a5 (before simplification) the numerator and denominator are divisible
by 5.

11



4.

A D B E

CIn triangle ABC, the point D lies on segment AB
such that CD is the angle bisector of angle C. The
perpendicular bisector of segment CD intersects the
line AB in E. Suppose that |BE| = 4 and |AB| = 5.

(a) Prove that ∠BAC = ∠BCE.

(b) Prove that 2|AD| = |ED|.

5. Kira has 3 blocks with the letter A, 3 blocks with the letter B, and 3 blocks
with the letter C. She puts these 9 blocks in a sequence. She wants to have
as many distinct distances between blocks with the same letter as possible.
For example, in the sequence ABCAABCBC the blocks with the letter A
have distances 1, 3, and 4 between one another, the blocks with the letter
B have distances 2, 4, and 6 between one another, and the blocks with the
letter C have distances 2, 4, and 6 between one another. Altogether, we
got distances of 1, 2, 3, 4, and 6; these are 5 distinct distances.

What is the maximum number of distinct distances that can occur?

Solutions

1. Suppose n is divisor primary. Then n cannot have an odd divisor d ≥ 5.
Indeed, for such a divisor, both d− 1 and d+ 1 are even. Because d− 1 > 2,
these are both composite numbers and that would contradict the fact that
n is divisor primary. The odd divisors 1 and 3 can occur, because the
integer 3 itself is divisor primary.

Because of the unique factorisation in primes, the integer n can now only
have some factors 2 and at most one factor 3. The number 26 = 64 and all
its multiples are not divisor primary, because both 63 = 7 · 9 and 65 = 5 · 13
are not prime. Hence, a divisor primary number has at most five factors 2.
Therefore, the largest possible number that could still be divisor primary is
3 · 25 = 96.

We now check that 96 is indeed divisor primary: its divisors are 1, 2, 3, 4,
6, 8, 12, 16, 24, 32, 48, and 96, and these numbers are next to 2, 3, 2, 3, 5,
7, 11, 17, 23, 31, 47, and 97, which are all prime. Therefore, the largest
divisor primary number is 96. �
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2. We solve this problem in two steps. First we will show that the smallest
possible integral average of a centenary set is 14, and then we will show
that we can obtain all integers greater than or equal to 14, but smaller
than 100, as the average of a centenary set.

If you decrease one of the numbers (unequal to 100) in a centenary set, the
average becomes smaller. Also if you add a number that is smaller than the
current average, the average becomes smaller. To find the centenary set with
the smallest possible average, we can start with 1, 100 and keep adjoining
numbers that are as small as possible, until the next number that we would
add is greater than the current average. In this way, we find the set with the
numbers 1 to 13 and 100 with average 1

14 ·(1+2+. . .+13+100) = 191
14 = 13 9

14 .
Adding 14 would increase the average, and removing 13 (or more numbers)
would increase the average as well. We conclude that the average of a
centenary set must be at least 14 when it is required to be an integer.

Therefore, the smallest integer which could be the average of a centenary
set is 14, which could for example be realised using the following centenary
set:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 100}.

Now we still have to show that all integers greater than 14 (and smaller
than 100) can indeed be the average of a centenary set. We start with
the centenary set above with average 14. Each time you add 14 to one of
the numbers in this centenary set, the average increases by 1. Apply this
addition from right to left, first adding 14 to 18 (the average becoming 15),
then adding 14 to 12 (the average becoming 16), then adding 14 to 11, et
cetera. Then you end up with the centenary set

{15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 32, 100}

with average 27, and you realised all values from 14 to 27 as an average.
Because we started adding 14 to the second largest number in the set,
this sequence of numbers remains increasing during the whole process, and
therefore consists of 14 distinct numbers the whole time, and hence the
numbers indeed form a centenary set.

We can continue this process by first adding 14 to 32, then 14 to 26 et
cetera, and then we get a centenary set whose average is 40. Repeating
this one more time, we finally end up with the set

{43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 60, 100}

with average 53. Moreover, we can obtain 54 as the average of the centenary
set {8, 100}, 55 as the average of {10, 100}, and so on until 99, which we
obtain as the average of {98, 100}. This shows that all values from 14 to
99 can be obtained. �
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3. (a) The sequence starts as follows.

a1 = 10
11 , a2 = 12

14 = 6
7 , a3 = 8

10 = 4
5 , a4 = 6

8 = 3
4 ,

a5 = 5
7 , a6 = 7

10 , a7 = 9
13

It seems that the last simplification occurred at a4. With induction
to n, we will prove that there is no simplification for all n ≥ 5. At the

same time, we will prove that an = 1+2(n−3)
1+3(n−3) for all n ≥ 5.

For n = 5, the statement is true, because a5 = 5
7 = 1+2(5−3)

1+3(5−3) and this

fraction 5
7 cannot be simplified further. Now suppose the statement

is true for n = k − 1. Consider n = k. Because there has been no
simplification for ak−1, the numerator of ak−1 equals 1 + 2(k− 4) and
the denominator equals 1 + 3(k − 4). Then the number ak is defined

as 1+2(k−4)+2
1+3(k−4)+3 = 1+2(k−3)

1+3(k−3) .

We will argue by contradiction that there is no simplification here.
Namely, suppose there is an integer d > 1 such that both 1 + 2(k − 3)
and 1 + 3(k− 3) are divisible by d. In particular, 3 · (1 + 2(k− 3))− 2 ·
(1+3(k−3)) = 1 will also be divisible by d. This gives a contradiction,
and the proof by induction is finished. �

(b) We will show that there must be a simplification at some point. Indeed,
suppose there is no simplification. Just like in part (a), we can show
by induction that an = 97+2n

97+3n . In particular, we see that a97 is not a
simplified fraction, because both the numerator and denominator are
divisible by 97, and that is a contradiction. �

(c) You can use c = 7 or c = 27, for example. Then we get the sequences

7
8 ,

9
11 ,

11
14 ,

13
17 ,

15
20 = 3

4

and
27
28 ,

29
31 ,

31
34 ,

33
37 ,

35
40 = 7

8 . �
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4. (a) In triangle 4ADC, the sum of the angles is 180◦, hence

∠BAC = ∠DAC = 180◦ − ∠ADC − ∠ACD.

Because CD is the angle bisector of ∠ACB, we have ∠ACD = ∠DCB
and hence the equality above can be rewritten as

∠BAC = 180◦ − ∠ADC − ∠DCB.

Now we use that ∠ADB is a straight angle, hence ∠EDC = 180◦ −
∠ADC. Substituting this yields

∠BAC = ∠EDC − ∠DCB.

Because E lies on the perpendicular bisector of CD, we have ∠EDC =
∠ECD, and the equality becomes

∠BAC = ∠ECD − ∠DCB.

Finally, we also see in the picture that ∠ECD − ∠DCB = ∠BCE,
and hence

∠BAC = ∠BCE. �

(b) Triangles 4ACE and 4CBE are similar, because ∠AEC = ∠CEB
(same angle) and in part (a) we proved that ∠BAC = ∠BCE and
hence ∠CAE = ∠BCE. This yields

|AE|
|CE|

=
|CE|
|BE|

.

Using the fact that |BE| = 4, we compute

|AE| = |AB|+ |BE| = 5 + 4 = 9.

Substituting this in the ratios above, we obtain

9

|CE|
=
|CE|

4
,

hence |CE|2 = 36 and |CE| = 6. Because the perpendicular bisector
of CD passes through E, we have |CE| = |DE|. This yields

6 = |CE| = |DE| = |DB|+ |BE| = |DB|+ 4

and hence |DB| = 2. Therefore, we conclude that

|AD| = |AB| − |BD| = 5− 2 = 3 and |ED| = 6.

We obtain that 2|AD| = 2 · 3 = 6 = |ED|. �
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5. We will show that the maximum number of distinct distances is 7. First we
prove that the number of distinct distances cannot be more than 7, then
we will show that there is a sequence of blocks with 7 distances.

The possible distances between two blocks in the sequence are the numbers
1 to 8. Therefore, there can certainly be no more than 8 distinct distances.
We will show that there is always at least one distance that does not occur.

If in a sequence the distances 8 and 7 do not both occur, we are done.
Therefore, suppose we have a sequence in which these two distances do
both occur. The distance 8 can only occur between the very first and the
very last block, so these should have the same letter on them, say A. The
distance 7 can only occur between the first and the eighth (second last)
block, or between the second and the last block. Because both outer blocks
have an A, the second or eighth block must also have an A. Then the
sequence of blocks is AAxxxxxxA (or the other way around: AxxxxxxAA),
where on the place of x are blocks with a B or C. Now we see that the
distance 6 cannot occur anymore: the distances between the blocks with A
are 1, 7, and 8, and the distances between the blocks with B and the blocks
with C are at most 5. Also in this case, there is at least one distance that
does not occur.

We conclude that there is always one of the possible distances 1, 2, 3, 4, 5,
6, 7, 8 that does not occur. Hence, the number of distinct distances cannot
be more than 7.

An example of a sequence of blocks where 7 distinct distances occur, is
ABBCACCBA, with distances 4, 4, 8; 1, 5, 6; 1, 2, 3 (only the distance 7
is missing). So the maximal number of distinct distances is equal to 7. �
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BxMO Team Selection Test, March 2023

Problems

1. Let n ≥ 1 be an integer. Ruben takes a test with n questions. Each question
on this test is worth a different number of points. The first question is
worth 1 point, the second question 2, the third 3 and so on until the last
question which is worth n points. Each question can be answered either
correctly or incorrectly. So an answer for a question can either be awarded
all, or none of the points the question is worth. Let f(n) be the number of
ways he can take the test so that the number of points awarded equals the
number of questions he answered incorrectly.

Do there exist infinitely many pairs (a, b) with a < b and f(a) = f(b)?

2. Find all functions f : R→ R for which

f(a− b)f(c− d) + f(a− d)f(b− c) ≤ (a− c)f(b− d)

for all real numbers a, b, c and d.

Note that there is only one occurrence of f on the right hand side!

3. We play a game of musical chairs with n chairs numbered 1 to n. You
attach n leaves, numbered 1 to n, to the chairs in such a way that the
number on a leaf does not match the number on the chair it is attached to.

One player sits on each chair. Every time you clap, each player looks at
the number on the leaf attached to his current seat and moves to sit on the
seat with that number. Prove that, for any m that is not a prime power
with 1 < m ≤ n, it is possible to attach the leaves to the seats in such a
way that after m claps everyone has returned to the chair they started on
for the first time.

4. In a triangle 4ABC with ∠ABC < ∠BCA, we define K as the excentre
with respect to A. The lines AK and BC intersect in a point D. Let E be
the circumcentre of 4BKC. Prove that

1

|KA|
=

1

|KD|
+

1

|KE|
.

5. Find all pairs of prime numbers (p, q) for which

2p = 2q−2 + q!
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Solutions

1. For the first few values of f , note that f(1) = 0, f(2) = f(3) = f(4) = 1,
f(5) = f(6) = 2, f(7) = f(8) = 3, f(9) = f(10) = 5. We claim that for
n ≥ 11, f(n) is strictly increasing as a function of n. Therefore there is
only a finite number of pairs as in the problem.

We view a way of taking a test as a subset of {1, 2, . . . , n} by taking the set
of numbers of questions that are answered correctly. We say that a subset
Sn of {1, 2, . . . , n} is an n-equally correct set if the sum of all elements of Sn

is equal to the number of elements in the complement of Sn in {1, 2, . . . , n}.
So by definition, f(n) is the number of n-equally correct sets. Note that a
subset Sn of {1, 2, . . . , n} is n-equally correct if and only if the sum of all
elements of Sn plus the number of elements of Sn equals n.

We first claim that f(n) is non-decreasing for n ≥ 1. Let Sn−1 be an
(n− 1)-equally correct set. Then adding 1 to the largest element of Sn−1
gets us a subset Sn of {1, 2, . . . , n}. This subset has as many elements as
Sn−1 and has sum 1 higher than the sum of Sn−1, which is therefore an
n-equally correct set. This procedure defines an injective map Fn from the
set of (n− 1)-equally correct sets to the set of n-equally correct sets for all
n ≥ 2. Therefore f(n) ≥ f(n− 1) for all n ≥ 2.

We now show that, for n ≥ 11, there exists an n-equally correct set that is
not in the image of Fn. Note that an n-equally correct set of which the two
largest elements differ by exactly 1 cannot be in the image of Fn; the reason
is that a set in this image is one that is obtained by adding 1 to the largest
element of a subset of {1, 2, . . . , n − 1}. If n = 2k + 1 with k ≥ 5, then
S = {1, k − 2, k − 1} is n-equally correct, as 1 + (k − 2) + (k − 1) + |S| =
2k + 1 = n. Similarly, if n = 2k with k ≥ 6, then S = {2, k − 3, k − 2} is
n-equally correct, because 2 + (k−3) + (k−2) + |S| = 2k = n. We conclude
that f(n) > f(n− 1) for all n ≥ 11. �

2. The solutions to the given functional inequality are f(x) = 0 for all x and
f(x) = x for all x. For f(x) = 0, we easily find that equality always holds.
For f(x) = x we check that

(a− b)(c− d) + (a− d)(b− c) = ac− ad− bc+ bd+ ab− ac− bd+ cd

= −ad− bc+ ab+ cd

= (a− c)(b− d),

so equality holds in that case too. Now we show that these functions are
the only two solutions.
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Substituting a = b = c = d = 0 gives us 2f(0)2 ≤ 0, and therefore f(0) = 0.

Then we substitute b = a− x, c = a, and d = a− y, which gives a− b = x,
a− c = 0 and a− d = y. From this we deduce that

f(y)
(
f(x) + f(−x)

)
≤ 0 (1)

Suppose there is a y such that f(y) 6= 0. If we then substitute x = y in the
equation above and move one of the terms to the right, we find that

0 < f(y)2 ≤ −f(y)f(−y).

Therefore one of the two values f(y) and f(−y) is positive and the other is
negative. Assume without loss of generality that f(y) is positive.

Now, given arbitrary a and y, substitute b = a, c = 0, and d = a− y. Then
we find that f(y)f(a) ≤ af(y). Thus, if we divide both sides by the positive
f(y), we get f(a) ≤ a. On the other hand, if we substitute b = a, c = 0,
and d = a+ y, we find that f(−y)f(a) ≤ af(−y). Since f(−y) is negative,
the sign flips when we divide by f(−y) so we deduce that f(a) ≥ a. We
conclude that f(a) = a for all real a.

Therefore a solution f of the given functional inequality is either the zero
function or f(a) = a for all real a, and we confirmed in the beginning that
both are indeed solutions. �

3. If m = n, then attach to chair i the leaf with number i+ 1. Everyone then
moves up a chair every clap and for everyone, the first time they return to
the chair they started on is after n claps. So after n claps for the first time,
everyone has returned to the chair they started on. Now suppose m < n.

Since m is not a prime power, we can write m as m = k` with gcd(k, `) = 1.
We claim that there are a, b > 0 such that

ak + b` = n.

Note that the numbers n−ak with a ∈ {1, 2, . . . , `} are all different modulo
`. We show this by contraposition. Suppose that there are a1 and a2
in {1, 2, . . . , `} such that n − a1k ≡ n − a2k mod `. Then we also have
(a1 − a2)k ≡ 0 mod `. As gcd(k, `) = 1, it follows that ` | (a1 − a2). Since
a1 and a2 both are in {1, 2, . . . , `}, it follows that a1 = a2. Therefore if a1
and a2 are in {1, 2, . . . , `} and a1 6= a2, then n− a1k 6≡ n− a2k mod `. So
the numbers n− ak with a ∈ 1, 2, . . . , ` are indeed all different modulo `.

It follows that the n− ak for a ∈ {1, 2, . . . , `} are all the ` residue classes
modulo `. Since n− ak ≥ n− `k = n−m > 0, these ` numbers are also
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all greater than 0. Now choose the a for which n − ak is congruent to 0
modulo `. Since n− ak is greater than 0, there is now a b > 0 such that
n− ak = b`. This gives the a, b > 0 such that ak + b` = n.

Now we divide the chairs into a groups of k chairs and b groups of ` chairs.
In each group, we arrange the chairs in a circle and attach the leaves to
chairs in such a way that each leaf has the number of the next chair in the
circle. The players on a chair in a group with k chairs, return to the chair
they started on every k claps (and not on any other clap). The players on
a seat in a group with ` seats, return to the chair they started on every `
claps (and not on any other clap). So the first time everyone returns to the
chair they started on is after lcm(k, `) claps. But

lcm(k, `) = k` = m,

because gcd(k, `) = 1. �

A

B C D

E

K

4. Write ∠CAB = 2α, ∠ABC = 2β and ∠BCA = 2γ. Note that α+ β + γ =
1
2 (∠CAB + ∠ABC + ∠BCA) = 1

2 · 180◦ = 90◦.

We first prove that K, A and E are collinear. Since K lies on the interior
bisector of ∠ABC and on the exterior bisector of angle ∠CAB we find that
∠BKA = 180◦−∠KAB−∠ABK = 180◦−(90◦+α)−β = 90◦−α−β = γ.
On the other hand, we know that ∠BCK = 90◦ + γ > 90◦ is obtuse.
Since E is the circumcentre of 4BKC, E therefore lies on the opposite
side of BK to C, and using the inscribed angle theorem, we find that
∠KEB = 2 · (180◦ − ∠BCK) = 2 · (90◦ − γ) = 180◦ − 2γ. However, since
E is the circumcentre of 4BKC, we also know that 4BEK is isosceles
with apex E. So ∠BKE = 1

2 (180◦ − ∠KEB) = 1
2 · 2γ = γ. We deduce

that ∠BKA = γ = ∠BKE, from which it follows that K, A and E are
collinear.

Because of this collinearity, we find that ∠AEB = ∠KEB = 180◦ − 2γ =
180◦ − ∠BCA, so ACBE is a cyclic quadrilateral. Therefore ∠AEC =

20



∠ABC = ∠ABD. Since also ∠CAE = 90◦ + α = ∠KAB = ∠DAB, we
find that 4AEC ∼ 4ABD due to equal angles.

The last two observations we need are that |EC| = |EK| because 4CEK
is also isosceles with apex E, and that BK is an internal angle bisector of
4ABD. Now it follows that

1− |KA|
|KE|

=
|KE| − |KA|
|KE|

=
|AE|
|KE|

=
|AE|
|CE|

=
|AB|
|DB|

=
|AK|
|DK|

,

where we have used the following respectively: the difference of fractions,
the collinearity of K, A, and E, the equality |EC| = |EK|, the similarity
4AEC ∼ 4ABD, and the angle bisector theorem on BK in 4ABD. The

required property now follows simply by taking |KA|
|KE| to the other side and

dividing by |KA|. �

5. Answer: the only pairs (p, q) that satisfy the given condition are (3, 3) and
(7, 5).

First, we check a few cases for small q. If q = 2, then 2p = 1 + 2 has no
solution. If q = 3, then 2p = 2 + 6 gives that p = 3 is the only solution. If
q = 5, then 2p = 8 + 120 gives that p = 7 is the only solution. We claim
that there are no solutions with q ≥ 7, and prove this by contradiction.

Let q ≥ 7 be prime, and let p be a prime such that (p, q) satisfies the given
condition. Now we note that we can rewrite the given condition as

q! = 2p − 2q−2 = 2q−2(2p−q+2 − 1). (2)

Since q! is positive, so is the right-hand side. In particular, 2p−q+2 > 1, so
p− q+ 2 > 0 and 2p−q+2 is integer (and greater than 1). We conclude that
2p−q+2 − 1 is integer and odd, therefore the right-hand side has exactly
q − 2 factors 2. To count the number of factors on the left-hand side let
ν2(a) be the function that counts how many factors 2 an integer a has.
Since q is a prime number greater than 2, it is odd. Then b q2c = q−1

2 and

in general b q
2i c = b q−12i c. Now let n be the integer such that 2n < q < 2n+1.

Then we compute

ν2(q!) = b q2c+ b q4c+ . . .+ b q
2n c

= b q−12 c+ b q−14 c+ . . .+ b q−12n c
≤ (q − 1)( 1

2 + 1
4 + . . .+ 1

2n )

= (q − 1)(1− 1
2n )

= (q − 1)− q−1
2n

≤ q − 2.
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In both inequalities above, equality holds if and only if q = 2n + 1 (and we
have thus used in the second line that q is odd). As the number of factors
in the right-hand side of (2) is also q − 2, equality must hold, so we must
have q = 2n + 1 for a certain positive integer n.

Now that we have come a long way by looking at factors 2, we will now
derive the desired contradiction from equation (2) with modular arithmetic,
using the fact that q! has many prime factors. From our small examples,
we know this is not going to work modulo 3 or 5, so try the next prime
number: 7.

Since we have assumed that q is at least 7, q! is indeed divisible by 7.
Therefore we have 2p−q+2 ≡ 1 mod 7. Since also 23 ≡ 8 ≡ 1 mod 7, it
follows that 2gcd(p−q+2,3) ≡ 1 mod 7. But 21 6≡ 1 mod 7, so gcd(p− q +
2, 3) = 3, hence p− q+ 2 ≡ 0 mod 3. However, we know that q = 2n + 1 is
congruent to −1 or 0 modulo 3. Since q is prime (and greater than 3), the
second case cannot occur and we conclude that q ≡ −1 mod 3. But then
it follows from p− q + 2 ≡ 0 mod 3 that p ≡ q − 2 ≡ −1− 2 ≡ 0 mod 3.
Since p is also prime, we conclude that p = 3. But then 2q−2 + q! = 23 = 8
has no solutions for q ≥ 7.

We conclude that the only pairs (p, q) that satisfy the given condition are
(3, 3) and (7, 5). �
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IMO Team Selection Test 1, June 2023

Problems

1. Let 4ABC be a triangle with |AB| < |AC| < |BC| and with circumcircle
Γ having centre O. Let ω1 be the circle with centre B and radius |AC| and
let ω2 be the circle with centre C and radius |AB|. The circles ω1 and ω2

intersect in a point E such that A and E lie on opposite sides of the line
BC. The circles Γ and ω1 intersect in a point F and the circles Γ and ω2

intersect in a point G such that F and G lie on the same side of the line
BC as E.

Prove that the antipode K of A relative to Γ is the circumcentre of 4EFG.

2. Determine the largest real number M such that for each infinite sequence
x0, x1, x2, . . . of real numbers satisfying

(a) x0 = 1 and x1 = 3,

(b) x0 + x1 + · · ·+ xn−1 ≥ 3xn − xn+1 for all n ≥ 1,

the inequality
xn+1

xn
> M,

holds for all n ≥ 0.

3. Find all positive integers n for which there exist n distinct positive integers
a1, a2, . . . , an, none of them greater than n2, such that

1
a1

+ 1
a2

+ · · ·+ 1
an

= 1. (3)

4. Given a positive integer n define τ(n) as the number of positive divisors of
n, and define σ(n) as the sum of these divisors. Find all positive integers n
for which

σ(n) = τ(n) ·
⌈√

n
⌉
.

For a real number x, we use the notation dxe to mean the smallest integer
greater than or equal to x.
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Solutions

1. Since |BE| = |AC| and |CE| = |AB|, ABEC is a parallelogram. Therefore
BE ‖ AC. On the other hand, ABGC is a cyclic quadrilateral with
|CG| = |AB|. It follows that ABGC is an isosceles trapezoid with BG ‖ AC.
Therefore B, G, and E are collinear. Completely analogously, we see that
C, F , and E are collinear.

Since K is the antipode of A relative to Γ, we have ∠ACK = 90◦. As
AC ‖ BE and G lies on the line BE, it follows that CK is perpendicular
to GE. But we also know that |CE| = |AB| = |CG|, so 4ECG is isosceles
and CK is the perpendicular bisector of EG. In the same way, we see that
BK is the perpendicular bisector of EF . So K lies on the perpendicular
bisectors of EG and EF . We conclude that K is the circumcentre of
4EFG. �

Γ ω1

ω2

A

B

C

EG

F

2. Answer: the largest possible M for which the given property holds is M = 2.

We first show that the given property holds for M = 2. To do this, we show
by induction on n the stronger statement that xn+1 > 2xn > xn + xn−1 +
. . .+x0 for all n ≥ 0. For n = 0, this is the statement x1 > 2x0 > x0 which
translates with the given initial values to 3 > 2 > 1. Now suppose for the
induction hypothesis that xn+1 > 2xn > xn + xn−1 + . . . + x0. Then we
find for xn+2:

xn+2 ≥ 3xn+1 − (xn + . . .+ x0)

> 2xn+1

> xn+1 + xn + . . .+ x0.

This completes the induction step. By induction, it follows that for all
sequences x satisfying (a) and (b), the inequality xn+1

xn
> 2 holds for all

n ≥ 0.
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To show that we cannot find a higher value for M , we look at the sequence
x with x0 = 1, x1 = 3, and for which equality holds in (b), i.e. x0 + x1 +
· · ·+ xn−1 = 3xn − xn+1 for all n ≥ 1. Then the following relation holds:

xn+1 = 3xn − (xn−1 + . . .+ x0)

= 3xn − xn−1 − (xn−2 + . . .+ x0)

= 3xn − xn−1 − (3xn−1 − xn)

= 4xn − 4xn−1.

Note that this is a homogeneous linear recurrence relation, the characteristic
equation of which is λ2 − 4λ+ 4 = (λ− 2)2 = 0. Since the characteristic
equation has a double root at λ = 2, the general solution of the recurrence
relation is of the form xn = B2n + Cn2n for real numbers B and C. If we
now solve this for the given starting values x0 = 1 and x1 = 3, we get the
system of equations B + 0 = x0 = 1 and 2B + 2C = x1 = 3. Its unique
solution is given by B = 1 and C = 1

2 . So the solution for these starting
values is xn = 1 · 2n + 1

2n2n = (n+ 2)2n−1.

Now that we have solved the recurrence relation, a simple computation
yields

xn+1

xn
=

(n+ 3)2n

(n+ 2)2n−1
= 2

n+ 3

n+ 2
= 2
(

1 +
1

n+ 2

)
.

So for sufficiently large n, this fraction becomes arbitrarily close to 2. To
state this more precisely: suppose M = 2 + ε with ε > 0. Then, for this
sequence and n > 2

ε − 2, we have xn+1

xn
= 2 + 2

n+2 < 2 + ε = M . Therefore
no such M can have the given property. So the largest value of M that
has the given property is 2, and in the first part of this solution we have
already seen that M = 2 has the given property. �

3. The answer is that the given property holds for all n 6= 2. For n = 1,
the set {1} satisfies (3). For n = 2, note that no set satisfies (3); if a1 or
a2 equals 1, then 1

a1
+ 1

a2
> 1, if a1 and a2 are both at least two, then

1
a1

+ 1
a2
≤ 1

2 + 1
3 < 1.

So now suppose that n ≥ 3. Note that we have the identity

1
k = 1

k+` + 1
k(k+1) + 1

(k+1)(k+2) + · · ·+ 1
(k+`−1)(k+`) . (4)

Indeed, if we use 1
k(k+1) = 1

k −
1

k+1 then the right-hand side of (4) is equal
to

1
k+` + ( 1

k −
1

k+1 ) + ( 1
k+1 −

1
k+2 ) + · · ·+ ( 1

k+`−1 −
1

k+` ) = 1
k+` + 1

k −
1

k+` .
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Substituting k = 1 and ` = n− 1 into (4), we obtain an identity

1 = 1
n + 1

1·2 + 1
2·3 + 1

3·4 + 1
4·5 + · · ·+ 1

(n−1)·n . (5)

If n 6= k(k + 1) for all k ≥ 1, this is a sum of n distinct reciprocals, each
with denominator smaller than n2. This shows that the given property
holds for all n ≥ 3 not of the form k(k + 1).

Suppose that there exists some k ≥ 1 such that n = k(k + 1). Then we
apply to the right-hand side of (5) the substitutions 1

n + 1
(n−1)n = 1

n−1 and
1
6 = 1

10 + 1
15 . Then we get the identity

1 = 1
n−1 + 1

2 + 1
10 + 1

15 + 1
3·4 + 1

4·5 + · · ·+ 1
(n−2)·(n−1) . (6)

This is a sum of n reciprocals. Note that each denominator of each reciprocal
is smaller than n2; this is only non-obvious for the term 1

15 , and since
n = k(k+ 1) and n ≥ 3, we in particular have n ≥ 6, and therefore n2 > 15.
Now we show that these reciprocals are distinct.

Note that k(k + 1) is always even. Since n is of the form k(k + 1), n− 1 is
odd and therefore not of this form. Furthermore, n− 1 is also unequal to
2, 10 and 15, since 3, 11 and 16 are not of the form k(k + 1). Also, 10 and
15 themselves are not of the form k(k + 1). Therefore all the reciprocals in
the right-hand side of (6) are distinct. So the given property holds for all
n ≥ 3 of the form k(k + 1) as well. �

4. Answer: the solutions for n are n = 1, 3, 5, 6.

Indeed, for these four cases we have respectively, 1 = 1 · 1, 4 = 2 · d
√

3e,
6 = 2 · d

√
5e, and 12 = 4 · d

√
6e. From now on, we assume that n 6= 1.

If n is square, then n has an odd number of divisors 1 = d1 < d2 < . . . <
d2k−1 = n. The middle of these is dk =

√
n; all other divisors can be

partitioned into k−1 pairs (di, d2k−i) with did2k−i = n. Using the AM-GM
inequality, we then find that

σ(n)

τ(n)
=

∑2k−1
i=1 di

2k − 1
>

2k−1

√∏2k−1

i=1
di =

2k−1

√√
n · nk−1 =

√
n =

⌈√
n
⌉
,

Note that in the instance of the AM-GM inequality used, we cannot have
equality because d1 6= d2k−1. Therefore for n square there are no solutions.

If n is not square, then n has an even number of divisors. We can see
this by taking the prime factorisation n = pe11 p

e2
2 · · · p

et
t ; we then have

τ(n) = (e1 + 1)(e2 + 1) · · · (et + 1) and at least one of ei must be odd as n is
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not square. We again order the divisors by size 1 = d1 < d2 < . . . < d2k = n.
For the middle two of these divisors, we find

dk + dk+1 + 1

2
≥ dk + dk+1

2
≥
√
dkdk+1 =

√
n.

Since either dk+dk+1+1
2 or dk+dk+1

2 is integer, it follows that dk+dk+1+1
2 is

greater than or equal to a positive integer greater than or equal to
√
n.

We deduce that dk+dk+1+1
2 ≥

⌈√
n
⌉
, which we can rewrite as dk + dk+1 ≥

2
⌈√

n
⌉
− 1.

Suppose we have two divisors d < e ≤
√
n of n. Then both sequences

(d, ne ) and (1, ed ) are strictly increasing, because d <
√
n ≤ n

e and 1 < e
d ,

respectively. Using the rearrangement inequality, we then find that d+ n
d >

e+ n
e . Note that this is a strict inequality because both rows are strictly

increasing. With e = dk we then find that d+ n
d > dk + dk+1 ≥ 2

⌈√
n
⌉
− 1.

So dk−i + dk+1+i > 2
⌈√

n
⌉
− 1 and therefore dk−i + dk+1+i ≥ 2

⌈√
n
⌉

for
all 1 ≤ i ≤ k − 1.

Now suppose that n ≥ 8. Then note that (n− 4)2 ≥ 42 > 12, and therefore
that n2 − 8n+ 16 ≥ 12. We can also write this as n2 − 4n+ 4 ≥ 4n and
then decompose this as (n− 2)2 ≥ 4n. So taking the square root of both
sides of this inequality, we find that

n− 1

2
≥ n− 2

2
≥
√
n.

As before, we note that n−1
2 is now greater than or equal to a positive

integer greater than or equal to
√
n, so n−1

2 ≥
⌈√

n
⌉
. We can rewrite this

as n+ 1 ≥ 2
⌈√

n
⌉

+ 2.

For non-square n ≥ 8 we conclude that

σ(n) = (dk + dk+1) + (dk−1 + dk+2) + . . .+ (d2 + d2k−1) + (d1 + d2k)

≥ (2
⌈√

n
⌉
− 1) + 2

⌈√
n
⌉

+ . . .+ 2
⌈√

n
⌉

+ (2
⌈√

n
⌉

+ 2)

= 2k
⌈√

n
⌉

+ 1

= τ(n) ·
⌈√

n
⌉

+ 1,

so no such n can be a solution.

Finally none of the remaining cases can be solutions, since for n = 2 we
have 3 6= 2 · d

√
2e and for n = 7 we have 8 6= 2 · d

√
7e. (The case n = 4 was

handled in the square case.) �
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IMO Team Selection Test 2, June 2023

Problems

1. Let n be a positive integer. Prove that the numbers

11, 33, 55, . . . , (2n − 1)2
n−1

are in different residue classes modulo 2n.

2. A triangle ABC and a point D on the line segment AC are given. Let M
be the midpoint of CD and let Ω be the circle through B and D tangent
to AB. Let E be the point such that 4MDB ∼ 4MBE and such that D
and E lie on opposite sides of the line MB.

Show that E lies on Ω if and only if ∠ABD = ∠MBC.

3. Find the smallest possible value of

xy + yz + zx+
1

x
+

2

y
+

5

z

with x, y, z positive real numbers.

4. Let n ≥ 3 be a fixed positive integer. There are n boxes A1, A2, . . . , An, each
with a number of stones in it (a1, a2, . . . , an) such that a1+a2+· · ·+an = 3n.
A move consists of the following operations:

choose a box and distribute all the stones in the box among the
n boxes (including the box that was chosen) such that for every
two boxes the numbers of stones added to those boxes differ by
at most 1.

For a distribution a1, a2, . . . , an, we define f(a1, a2, . . . , an) as the least
number of moves required to get all the stones into a single box. Let Mn be
the maximum of f(a1, a2, . . . , an) for all possible distributions a1, a2, . . . , an
such that a1 + a2 + · · · + an = 3n. Determine Mn and all distributions
a1, a2, . . . , an for which f(a1, a2, . . . , an) = Mn.

Example. If n = 4 and the boxes contain 2, 6, 0, 4 stones in that order,
then we can distribute the 2 stones from box A1 by putting in each box in
order 1, 0, 1, 0 stones. After this move, the number of stones in each box
in order is 1, 6, 1, 4.
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Solutions

1. We proceed by induction on n. For n = 1, the only number in the sequence
is 11, so the given statement is trivially true.

For the induction step, we are to show that for n ≥ 1, the numbers
11, 33, 55, . . . , (2n+1 − 1)2

n+1−1 are in different residue classes modulo 2n+1,
given the induction hypothesis that 11, 33, 55, . . . , (2n − 1)2

n−1 are in dif-
ferent residue classes modulo 2n.

So suppose that that is the case. We split the numbers 11, 33, 55, . . . , (2n+1−
1)2

n+1−1 into two groups, namely 11, 33, 55, . . . , (2n− 1)2
n−1, which we will

call the lesser group, and (2n + 1)2
n+1, (2n + 3)2

n+3, . . . , (2n+1 − 1)2
n+1−1,

which we will call the greater group. First note that the numbers in the
lesser group are also all in different residue classes modulo 2n+1.

Note that because ϕ(2n+1) = 2n, we have ak ≡ a` mod 2n+1 for k, `, a
such that k ≡ ` mod 2n and a is odd. We will use this observation to
compare the residue classes of the greater group to those of the lesser group.

Write the numbers in the greater group as (2n +m)2
n+m for 1 ≤ m ≤ 2n−1

and odd. Expanding (2n +m)2
n+m using Newton’s binomial, we note that

any term with at least two factors 2n is congruent to 0 modulo 2n+1. We
thus find modulo 2n+1 that

(2n +m)2
n+m ≡ m2n+m + (2n +m)m2n+m−12n + 22n(· · · )

≡ m2n+m + (2n +m)m2n+m−12n

≡ mm + (22n + 2nm)mm−1

≡ mm + 2n ·mm

≡ mm + 2n, (7)

where we have used in the last step that mm is odd; writing mm as 2a+ 1
shows that 2n(2a+ 1) = 2n+1a+ 2n ≡ 2n mod 2n+1.

Since the numbers mm from the lesser group are different modulo 2n+1,
the numbers from the greater group therefore are also different modulo
2n+1. Moreover, from (7) it follows that the numbers from the lesser group
are different from those from the greater group modulo 2n+1. Indeed,
suppose for a contradiction that (2n + m)2

n+m ≡ kk mod 2n+1 with
1 ≤ k,m ≤ 2n−1, then it follows from (7) that mm ≡ mm + 2n ≡ kk

mod 2n. So because of the induction hypothesis, it follows that m = k.
But in that case we have (2n +m)2

n+m ≡ mm + 2n 6≡ mm mod 2n+1 and
we obtain the desired contradiction.
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So we conclude that no number from the lesser group and greater group has
the same residue class as any other number from these two groups. This
completes the induction step, and by induction it therefore follows that the
given statement is true for all positive integers n. �

A CD

E

B

M

Ω

2. We first prove that 4CMB ∼ 4DBE. Since D and E lie on opposite sides
of MB, it holds that ∠DBE = ∠DBM +∠MBE = ∠DBM +∠MDB =
∠CMB because of the given similarity and the exterior angle theorem.
Moreover, it holds that

|DB|
|BE|

=
|MD|
|MB|

=
|CM |
|MB|

because of the similarity defining E and the fact that M is the midpoint
of CD. It now follows that 4CMB ∼ 4DBE (sas). In particular, it
follows that ∠BED = ∠MBC. Therefore ∠ABD = ∠MBC if and only
if ∠ABD = ∠BED. By the inscribed angle theorem (tangent case), this
holds if and only if AB is tangent to the circumcircle of 4BDE. The
circle through B and D tangent to AB is unique, and has as centre the
intersection of the perpendicular bisector of BD and the line through B
perpendicular to AB. So AB is tangent to the circumcircle of 4BDE if
and only if E lies on Ω. �

3. Answer: the smallest possible value is 3 3
√

36.

Using the AM-GM inequality, we find

xy + 1
3x + 1

2y ≥ 3 3

√
xy 1

3x
1
2y = 3 3

√
1
6 ,

yz + 3
2y + 3

z ≥ 3 3

√
yz 3

2y
3
z = 3 3

√
9
2 ,

xz + 2
3x + 2

z ≥ 3 3

√
xz 2

3x
2
z = 3 3

√
4
3 .
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When we add these three inequalities, we get

xy + yz + zx+ 1
x + 2

y + 5
z ≥ 3

(
3

√
1
6 + 3

√
9
2 + 3

√
4
3

)
= 3( 1

6 + 1
2 + 1

3 )
3
√

36 = 3
3
√

36.

For each of the three inequalities, equality holds if and only if the three
terms on the left-hand side are equal. Solving the resulting system of
equations, we get the solution (x, y, z) = ( 1

3
3
√

6, 12
3
√

6, 3
√

6). And in that
case xy + yz + zx+ 1

x + 2
y + 5

z is equal to

1
6

3
√

36 + 1
2

3
√

36 + 1
3

3
√

36 + 3 1
3√6

+ 4 1
3√6

+ 5 1
3√6

=
3
√

36 + 12 1
3√6

=
3
√

36 + 2
3
√

36 = 3
3
√

36. �

4. Answer: M = 3n − 4 and f(a1, a2, . . . , an) = 3n − 4 if and only if a1 =
a2 = · · · = an = 3.

First of all, we note that for every distribution, there exists a move such
that max(a1, . . . , an) increases by at least 1, unless all the stones are in
a single box. To see this, pick a box containing the highest number of
stones, pick a different non-empty box and distribute the stones from that
box such that at least one stone goes into the box containing the highest
number of stones. It follows that f(a1, a2, . . . , an) ≤ 3n−max(a1, . . . , an).
Specifically, if max(a1, . . . , an) ≥ 5, then f(a1, a2, . . . , an) ≤ 3n − 5. The
rest of the proof will follow from the following four claims.

Claim 1. If max(a1, . . . , an) = 4, then f(a1, a2, . . . , an) ≤ 3n− 5.

Proof. Let A1 be the box containing the highest number of stones, and
A2 be the box containing the second-highest number of stones. Note that
we must have a1 = 4 and a2 ≥ 3n−4

n−1 = 3 − 1
n−1 . Since a2 is integer and

n ≥ 3, that means a2 ≥ 3. While there exists a box other than A1 or A2

containing 2 or more stones, do the move consisting of distributing the
stones in that box in such a way that A1 and A2 each receive a stone.
The distribution b1, . . . , bn we obtain by performing these moves has the
properties that b3 + · · · + bn ≤ n − 2 and that b1 − b2 = a1 − a2 ≤ 1.
Therefore we have b1 + b2 ≥ 3n− (n− 2) = 2n+ 2, from which it follows
that that b2 = 1

2 (b2 + b2) ≥ 1
2 (b1 + b2 − 1) ≥ 1

2 (2n+ 1) = n+ 1
2 . Since b2 is

integer, we therefore have b2 ≥ n+ 1. Now we can do a move consisting
of distributing A2’s stones in such a way that A1 receives 2 stones. After
that, while there exists a box other than A1 that contains stones, we do a
move consisting of distributing the stones in that box in such a way that
A1 receives 1 stone. Since A1 receives at least two stones during one of
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the moves, and at least one during each of the other moves, the number of
moves needed to make all boxes except A1 empty is at most 3n− 5. �

Claim 2. If max(a1, . . . , an) = 3, then f(a1, a2, . . . , an) ≤ 3n− 4.

Proof. We make a random move and apply Claim 1 to the result. Then we
are done in at most 1 + (3n− 5) = 3n− 4 moves. �

Claim 3. There are no moves so that the maximum max(a1, . . . , an)
increases by 3 or more.

Proof. We proceed by contradiction. To make a move in which a box
receives more than 3 stones, the box that was distributed from in that
move would have to contain at least 3n+ 1 stones. This contradicts the
fact that there are only 3n stones. To make a move in which a box receives
exactly 3 stones, the box that was distributed from should contain at least
2n+1 stones. Any box that contains the highest number of stones after this
move, must contain at least 2n+ 4 stones, as the maximum has increased
by at least 3. That box therefore must also have contained at least 2n+ 1
stones before this move. This requires 4n + 2 stones and is therefore a
contradiction. �

Claim 4. If max(a1, . . . , an) = 3, then f(a1, a2, . . . , an) ≥ 3n− 4.

Proof. Suppose for a contradiction that we can move all the stones into
a single box in 3n − 5 or fewer moves. Because of Claim 3, there are no
moves where the maximum increases by 3 or more. That means there are
at least two moves where the maximum increases by 2. Such moves we
will call large moves. Note that each box receives at least 1 stone on a big
move. Let move i be the first large move, and let move j be the last large
move. Since a large move can only be performed with a box containing at
least n+ 1 stones and each box starts with 3 stones i− 1 ≥ (n+ 1)− 3, or
equivalently i ≥ n− 1.

Let m be the number of empty boxes at the beginning of move j. Since
each box contains at least 1 stone after move i, we must have made at least
one move per box that is empty by the beginning of move j. Therefore
(j − 1)− i ≥ m. Since each box receives at least 1 stone again, after move
j there are at most m boxes containing exactly 1 stone; the other boxes
contain at least 2 stones each. Since we don’t make any more large moves
after move j, it therefore takes at least m+ 2(n− 1−m) = 2(n− 1)−m
moves afterwards to empty n − 1 of the boxes. So the total number of
moves is at least

i+ (j − i) + 2(n− 1)−m ≥ (n− 1) + (m+ 1) + 2(n− 1)−m = 3n− 2,

which contradicts our assumption that we could put all the stones into a
single box in 3n− 5 or fewer moves. �
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IMO Team Selection Test 3, June 2023

Problems

1. Find all prime numbers p for which the positive integer

3p + 4p + 5p + 9p − 98

has at most 6 positive divisors.

Remark. You are allowed to use the fact that 9049 is a prime number
without proof.

2. Each pupil in the Netherlands is given a finite number of cards. On each
card, there is a real number in the interval [0, 1]. (The numbers on different
cards do not have to be different.) Find the smallest real number c > 0 for
which the following holds, independent of the numbers on the cards each
person has been given.

Any pupil for who the sum of the numbers on their cards is at
most 1000, can distribute their cards over 100 boxes such that
the sum of the cards in each box is at most c.

3. Let 4ABC be an isosceles triangle with |AB| = |AC|. Given a point P
in 4ABC distinct from to the circumcentre. Let ω be the circle through
C with centre P . The circle ω intersects the line segments BC and AC a
second time in D and E respectively. Let Γ be the circumcircle of 4AEP
and let F be the second intersection point of ω and Γ. Prove that the
centre of the circumcircle of 4BDF lies on Γ.

4. Find all functions f : Q+ → Q such that

f(x) + f(y) =

(
f(x+ y) +

1

x+ y

)(
1− xy + f(xy)

)
for all x, y ∈ Q+.
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Solutions

1. Write f(p) = 3p + 4p + 5p + 9p− 98. We claim that the only prime numbers
for which f(p) has at most 6 positive divisors are 2, 3, and 5.

Note that we have the prime factorisations f(2) = 3 · 11, f(3) = 7 · 112,
and f(5) = 7 · 9049. Therefore f(2), f(3), f(5) has 4, 6, 4 positive divisors
respectively, as the number of positive divisors of the prime factorisation
pe11 p

e2
2 · · · penn is (e1 + 1)(e2 + 1) · · · (en + 1).

Now let p > 5, and suppose for a contradiction that f(p) has at most
6 positive divisors. First note that modulo 7, we have that f(p) ≡ 3p +
(−3)p + 5p + (−5)p − 0 ≡ 0 as p is odd.

Next consider f(p) modulo 11. By Fermat’s little theorem, we have a10 ≡ 1
mod 11 for any integer a 6≡ 0 mod 11, so the residue class of f(p) modulo
11 is constant on any residue class modulo 10. Note that p must be one of
1, 3,−3,−1 mod 10, since otherwise p would have contained either 2 or 5
as a non-trivial factor.

Now note that by a straightforward computation {33, 43, 53, 93} contains the
same residue classes modulo 11 as {3, 4, 5, 9}. Repeating the same argument
shows that the same holds for {3−1, 4−1, 5−1, 9−1} (as −1 ≡ 32 mod 10)
and {3−3, 4−3, 5−3, 9−3} as well. As f(p) ≡ 3p + 4p + 5p + 9p− 98 mod 11,
it follows f(p) has the same value modulo 11 for every p ≡ 1, 3,−3,−1
mod 10, and therefore for every p > 5.

We use the case p ≡ 1 mod 10 to compute this value:

f(p) ≡ 31 + 41 + 51 + 91 − 98 mod 11

≡ 3 + 4 + 5 + 9 + 1 mod 11

≡ 0 mod 11.

We deduce that 11 | f(p) for all p > 5.

Now note that for all p > 5 we have f(p) > 95 = 9 · 81 · 81 > 7 · 11 · 77.
Hence we can write f(p) = 7 · 11 · d with d > 77. Then we see that f(p)
has at least 8 positive divisors, namely

1 < 7 < 11 < 77 < d < 7d < 11d < 77d.

So p = 2, 3, 5 are indeed the only prime numbers for which f(p) has at most
6 positive divisors. �
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2. Suppose one of the pupils has been given 1001 cards, each containing the
number 1000

1001 . Since the sum of the cards is 1000, this pupil should be able
to distribute the cards among the 100 boxes. Because of the pigeonhole
principle, there is at least one box with 11 cards. The sum of these 11 cards
is 11 · 10001001 = 11(1 − 1

1001 ) = 11 − 11
1001 = 11 − 1

91 . We are now going to
show that this is the smallest possible value, i.e. c = 11− 1

91 .

For a random pupil, we first consider those distributions for which the
maximum of the sums of the cards per box is as small as possible. From
these distributions we then pick a distribution for which the number of
boxes having their sum equal to this maximum, is as small as possible. Let
d1 ≤ d2 ≤ . . . ≤ d100 be the sums corresponding to the 100 boxes in this
distribution, ordered from low to high (with the last k of them equal to
the maximum). Since the sum of all cards is at most 1000, we have that

99d1 + d100 ≤ d1 + d2 + . . .+ d100 ≤ 1000.

On the other hand, moving a positive card from the box (with sum) d100 to
the box (with sum) d1 cannot create a better distribution per assumption:
i.e. the new distribution does not have a smaller maximum, or less than
k boxes equal to this maximum value. This means that the new value of
d1 is at least equal to d100. If d100 ≤ 10 we are immediately done, because
10 < 11− 1

91 . So we may assume that d100 > 10. Since each card is at most
1, this implies that box d100 contains at least 11 positive cards. This in
turn implies that there is a card in this box with positive value at most
d100

11 . Therefore, if we move this card to box d1, then it must hold that

d1 + d100

11 ≥ “new value of box d1” ≥ d100.

We can rewrite this as 11d1 ≥ 10d100. Combining this with the first
equation, we find

91d100 = 90d100 + d100 ≤ 99d1 + d100 ≤ 1000.

So, for each pupil, the smallest maximum of the sums of the cards per box
is d100 ≤ 1000

91 = 1001
91 −

1
91 = 11− 1

91 . �
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A

B
C

P

ω

D

E

Γ

FQ

3. Since |FP | = |PE|, the angles on these chords of Γ are also equal: ∠FAP =
∠PAE = ∠PAC. Then, using the cyclic quadrilateral AEPF , we find
that ∠PFA = 180◦ − ∠PEA = ∠PEC. It follows that

∠APF = 180◦ − ∠PFA− ∠FAP = 180◦ − ∠PEC − ∠PAC
= 180◦ − ∠ECP − ∠PAC = ∠CPA.

Since we also know that |FP | = |PC| (and of course |AP | = |AP |) it follows
that 4AFP ' 4ACP . From this we conclude that |AF | = |AC| = |AB|.
This means that A is the circumcentre of 4BCF . It also means that
4ABF is isosceles and so the perpendicular bisector of BF is equal to
the bisector of ∠BAF . On the other hand, 4DPF is also isosceles, so the
perpendicular bisector of DF is equal to the bisector of ∠DPF . We let Q
be the intersection of the perpendicular bisectors of BF and DF . Since A
and P are the centres of the corresponding circumscribed circles, we get
with the centre-to-center angle theorem that

∠QAF = 1
2∠BAF = ∠BCF = ∠DCF = 1

2∠DPF = ∠QPF.

So Q lies on Γ. �
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4. Answer: the only function that satisfies the conditions is f(m
n ) = m

n −
n
m .

Indeed, this function satisfies the conditions because(
f(x+ y) +

1

x+ y

)(
1− xy + f(xy)

)
=

(
(x+ y)− 1

x+ y
+

1

x+ y

)(
1− xy + xy − 1

xy

)
= (x+ y)

(
1− 1

xy

)
= x+ y − 1

x
− 1

y
= f(x) + f(y).

For functions on Q+, it is often a good idea to see what happens to the
natural numbers first. The idea is to play out products xy against sums
x+ y, such as 2 · 2 = 2 + 2.

Lemma. We must have f(1) = 0.

Proof. If we substitute x = y = 1 we get 2f(1) =
(
f(2) + 1

2

)
f(1). This

means that f(1) = 0 or f(2) = 3
2 .

Suppose f(2) = 3
2 . If we now substitute x = y = 2, we get 2f(2) =(

f(4) + 1
4

)
(f(4)− 3). We expand this as 3 = f(4)2 − 11

4 f(4) − 3
4 . After

multiplying by 4, we see that we can decompose this as (f(4) + 1)(4f(4)−
15) = 0. So f(4) = −1 or f(4) = 15

4 .

If we substitute y = 1 in the original equation we find that

f(x) + f(1) =

(
f(x+ 1) +

1

x+ 1

)
(f(x)− x+ 1) . (8)

If we substitute x = 2, 3, 4, 5 here, we get, respectively

3

2
+ f(1) =

(
f(3) +

1

3

)
· 1

2
,

f(3) + f(1) =

(
f(4) +

1

4

)
(f(3)− 2),

f(4) + f(1) =

(
f(5) +

1

5

)
(f(4)− 3),

f(5) + f(1) =

(
f(6) +

1

6

)
(f(5)− 4).

In the case that f(4) = 15
4 , the second equation yields that f(3) + f(1) =

4(f(3) − 2) so 3f(3) = f(1) + 8. However, the first equation yields that
3f(3) + 1 = 3 · 2 · ( 3

2 + f(1)) = 6f(1) + 9. We conclude that f(1) + 8 =
3f(3) = 6f(1) + 9− 1 = 6f(1) + 8. We find that f(1) = 0, as we wanted to
prove.
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On the other hand, suppose that f(4) = −1. As we have just seen, the
first equation yields that 3f(3) − 6f(1) = 8. In this case, the second
equation yields that f(3) + f(1) = − 3

4 (f(3) − 2) so 7f(3) + 4f(1) = 6.
If we solve this system (e.g. by adding two times the first equation to
three times the second), we find that f(1) = − 19

27 and f(3) = 34
27 . If we

substitute this into the third equation, we get −1 − 19
27 = −4

(
f(5) + 1

5

)
,

or f(5) = 61
270 . Similarly, from the fourth equation we then get that

61
270 −

19
27 =

(
f(6) + 1

6

)
( 61
270 − 4), or f(6) = − 245

6114 .

We have now calculated 6 as 4 + 1 + 1, but of course we can also do it as
2 · 3. If we substitute x = 2 and y = 3, we get

f(2) + f(3) =

(
f(5) +

1

5

)
(f(6)− 5).

However, if we substitute the values of f(2), f(3), f(5) and f(6) we found,
we do not get equality, as the left side is greater than zero and the right
side is smaller than zero. We conclude that the case f(4) = −1 cannot
occur, and hence that f(1) = 0. �

Now we would like to use equation (8) inductively, but the base case x = 1
does not work, because f(1) = 0. As a new base case we would like to use
f(4) = 15

4 from before, which did not result in a contradiction, but rather
in f(1) = 0.

Lemma. We must have f(4) = 15
4 .

Proof. We actually use the same trick as above to calculate f(4), but now
with the fact that we know f(1) instead of f(2). With x = y = 2, we again
find that 2f(2) =

(
f(4) + 1

4

)
(f(4)− 3). By substituting x = 2 in (8) we

find f(2) =
(
f(3) + 1

3

)
(f(2)− 1) and by substituting x = 3 in (8) we find

f(3) =
(
f(4) + 1

4

)
(f(3)− 2). We can solve this system of three equations

by rewriting the second equation as

f(3) =
f(2)

f(2)− 1
− 1

3 =
1

f(2)− 1
+ 2

3 ,

or f(2) = 1
f(3)− 2

3

+ 1. Similarly, it follows from the third equation that

f(4) = 2
f(3)−2 + 3

4 which we can rewrite as f(3)− 2
3 =

4
3 f(4)+1

f(4)− 3
4

. Combining

everything, we find that

(
f(4) + 1

4

)
(f(4)− 3) = 2f(2) = 2

(
1

f(3)− 2
3

+ 1

)
= 2

(
f(4)− 3

4
4
3f(4) + 1

+ 1

)
=

2f(4)− 3
2 + 8

3f(4) + 2
4
3f(4) + 1

=
14
3 f(4) + 1

2
4
3f(4) + 1

.
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If we expand this by multiplying by 12( 43f(4) + 1) we get a cubic equation.
With t = f(4), this equation is 16t3− 32t2− 101t− 15 = 0. Fortunately, we
already have a conjecture for a zero, namely t = 15

4 . We can easily check
that this is indeed a zero and we factor

0 = 16t3 − 32t2 − 101t− 15 = (4t− 15)(4t2 + 7t+ 1).

The discriminant of 4t2 + 7t + 1 is D = 72 − 4 · 4 = 33 which is not a
square of a rational number. So t = 15

4 is the only rational zero of the cubic
equation and the only possibility for f(4). �

From the three equations we started the system with for f(4), it now follows
directly that f(2) = 3

2 and f(3) = 8
3 . Altogether, with f(1), f(2), f(3) and

f(4), we have an induction basis for the statement f(n) = n − 1
n for all

natural numbers n. Assume as an induction hypothesis that this formula
holds for n. Then it follows from (8) that

f(n+ 1) =
f(n) + f(1)

f(n)− n+ 1
− 1

n+ 1
=

n− 1
n + 0

n− 1
n − n+ 1

− 1

n+ 1

=
n2 − 1

n− 1
− 1

n+ 1
= (n+ 1)− 1

n+ 1
,

which completes the induction. If we now substitute x = n and y = 1
n , we

find

f(n) + f( 1
n ) =

(
f(n+ 1

n ) +
1

n+ 1
n

)(
1− 1 + 0

)
= 0.

It follows that f( 1
n ) = −f(n) = 1

n − n. Now we prove that f(mn ) = m
n −

n
m

with induction to m. We just proved the induction basis with m = 1. So
now suppose this formula holds for some m and all n. Now we substitute
x = m

n and y = 1
n from which we get that

f(m+1
n ) =

f(m
n ) + f( 1

n )

f( m
n2 )− m

n2 + 1
− n

m+ 1
=

m
n −

n
m + 1

n − n
m
n2 − n2

m −
m
n2 + 1

− n

m+ 1

=
(m+ 1)( 1

n −
n
m )

n( 1
n −

n
m )

− n

m+ 1
=
m+ 1

n
− n

m+ 1
.

This completes the induction to m, and with it the complete proof. �
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Problems

Part 1

1. Joah has a very long liquorice lace. He keeps taking bites out of the lace
(but not from the very beginning or end of the lace), each time eating 2 cm
of the liquorice, creating two smaller pieces in the process. He repeats this
several times. At the end, he is left with pieces of liquorice lace of 1, 2, 3,
4, 5, 6, 7, 8, 9, and 10 cm.

How long (in cm) was his liquorice lace originally?

A) 55 B) 66 C) 73 D) 75 E) 81

2. Five distinct positive integers are in a sequence ordered from small to large.
The middle number is 20. The difference between the smallest two numbers
equals the difference between the largest two numbers. The fourth number
is four times as large as the first number, and the fifth number is twice as
large as the second number.

When you add all five numbers, what is the outcome?

A) 84 B) 90 C) 104 D) 110 E) 130

3. Petra, Quinten, Rakhi, Salome, and Teun organise a badminton tournament
consisting of five rounds. In each round, two players play against each
other and a third player is the referee. The other two players rest during
the round. Everyone plays twice and is the referee once. Nobody plays two
matches in a row and the referee of a match always rests in the next round.

Salome and Teun face each other in the first round. In the third round,
Rakhi plays against Salome, while Quinten is resting. Who is the referee of
the fifth round?

A) Petra B) Quinten C) Rakhi D) Salome E) Teun

4. The sides of a triangle have lengths 13, x, and 2x. Here x is an integer.

How many possibilities are there for x?

A) 2 B) 6 C) 7 D) 8 E) 12
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5. On a long street, there are four houses, numbered from 1 to 4, where the
distances between the houses are all distinct. The houses have their front
door directly on the street. There are eight people living in the first house,
two people each in the second and the third house, and three people in the
fourth house. A new bus stop is constructed in the street, in such a way
that the total distance for the 15 inhabitants of the street to the bus stop
is as short as possible.

Which house will be closest to the bus stop?

A) House 1
B) House 2
C) House 3
D) House 4
E) That depends on the distances between the houses.

6. Ayman writes down the numbers 1 through 10 in a sequence in some
order, writes down the nine (positive) differences between adjacent num-
bers and computes the sum of these differences. The result is called
the dynamic of the sequence. For example, the dynamic of the sequence
1, 2, 3, 4, 5, 6, 7, 8, 9, 10 is 9, and the dynamic of 2, 1, 3, 10, 4, 5, 9, 6, 8, 7 is
1 + 2 + 7 + 6 + 1 + 4 + 3 + 2 + 1 = 27.

What is the greatest dynamic that such a sequence with the numbers 1
through 10 can have?

A) 41 B) 43 C) 45 D) 47 E) 49

7. There are 25 guests at a party, one of which is Medan. Among the other
guests, there are 12 that each shook hands with exactly 18 people. The
other 12 each shook hands with exactly 6 people.

With how many guests did Medan shake hands?

A) 0 B) 6 C) 12 D) 18 E) 24

8. Sil has a lot of cards, which are yellow on one side and blue on the other.
Most cards have a number on both sides. If two cards have the same
number on the yellow side, then they have the same number on the blue
side. There are also cards with a × on the yellow side and a + on the blue
side. Finally, there are cards which have an = sign on both sides. If you
put down a correct multiplication with some of the yellow cards and then
turn over these cards, then you get a correct addition in blue. Cards with a
2 on the yellow side have a 2 on the blue side, cards with a 3 on the yellow
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side have a 3 on the blue side, and cards with a 5 on the yellow side have a
5 on the blue side.

All cards are lying on the table with the yellow side facing up. Sil tries
to discover what is on the blue side, without turning over the cards. For
example, cards with a 6 on the yellow side have a 5 on the blue side, because
the yellow expression 2×3 = 6 must have 2+3 = 5 on the blue back. Cards
with a 20 on the yellow side have a 9 on the blue back side, because the
yellow expression 2× 2× 5 = 20 becomes 2 + 2 + 5 = 9 in blue. The back
of a yellow card containing a fraction, for example 5

3 , can be determined
using 5

3 × 3 = 5, which becomes 2 + 3 = 5 when flipped; hence on the blue
side is a 2.

For which of the following numbers on the yellow side will there be a
negative number on the blue side?

A) 9
8 B) 25

27 C) 32
27 D) 64

81 E) 128
125

Part 2

1. Eleonora has a piece of paper in the shape of an equilateral triangle with
an area of 1. She folds the piece several times and puts it flat on the table.
It turns out that the figure on the table is not more than four layers thick
anywhere.

What is the minimum area of the figure lying on the table?

2. A zoo is reconstructing part of their park. In this part, there will be six
areas with six species of animals, one in each area. The six species are
tigers, lions, elephants, giraffes, zebras and monkeys. The map is as follows:

The tigers and lions cannot be next to each other (this means not in two
areas which share a side as border; two areas bordering in a vertex are
allowed). The monkeys cannot be next to the tigers and also not next to
the lions. The zebras cannot be next to the tigers.

In how many ways can the zoo distribute the six species over the six areas?
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3. We draw a rectangle in a grid. The four midpoints of the four sides of the
rectangle turn out to be the vertices (−3, 0), (2, 0), (5, 4), and (0, 4).

What is the area of the rectangle?

4. A whiteboard contains a calculation 1 ? 2 ? 3 ? 4 ? 5 ? 6 , where each question
mark is either a + or a ×. The correct outcome of the calculation is written
on the back of the board. Jaap copies the calculation but accidentally turns
one of the plus signs into a times sign. The outcome is now 58 more than
the number on the back of the board. Jaap now changes a times sign back
into a plus sign, but not on the place where he made the mistake before.
Now the result differs 1 from the previous result.

What number is on the back of the board?

5. We construct a sequence of numbers starting with 2022 and 21. Each
next number in the sequence is equal to the positive difference of the two
previous numbers. So the third and fourth number in the sequence are
2001 and 1980.

At which place in the sequence do we find the number 0 for the first time?

6. Kjell has a large piece of graph paper of 100× 100 squares.

How many squares can Kjell colour at most without there being three
coloured squares in a row, all directly next to each other or all directly
above each other?

7. In an apartment building with floors 0 up to and including 10, there is one
person living on each floor. Each morning, everyone in the building must
go to floor 0 to go outside. Everyone is willing to walk the stairs for at
most three floors. There can be at most four people in the lift at the same
time. The lift starts at floor 0.

At least how many floors must the lift move to get everyone outside?
Movements up and movements down are both counted.

8. A triple of consecutive two-digit positive integers is called sweet if the
four-digit number formed by the first and the last number is divisible by the
middle number. For example, the triple (20, 21, 22) is not sweet, because
2022 is not divisible by 21. Note that a two- or four-digit number cannot
start with a 0, so 03 is not a two-digit number, for example.

How many sweet triples are there?
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Answers

Part 1

1. C) 73 5. A) Huis 1

2. C) 104 6. E) 49

3. B) Quinten 7. C) 12

4. D) 8 8. E) 128
125

Part 2

1. 1
4 5. 154

2. 16 6. 6667

3. 40 7. 14

4. 68 8. 2
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