

Language: Dutch

Day: 1

Woensdag 15 juli 2009

Opgave 1. Laat n een positief geheel getal zijn en laat a_1, \ldots, a_k $(k \ge 2)$ verschillende gehele getallen uit de verzameling $\{1, \ldots, n\}$ zijn, zodanig dat n een deler is van $a_i(a_{i+1}-1)$ voor $i=1,\ldots,k-1$. Bewijs dat n géén deler is van $a_k(a_1-1)$.

Opgave 2. Zij ABC een driehoek en O het middelpunt van zijn omgeschreven cirkel. Laat P en Q inwendige punten zijn van respectievelijk de zijden CA en AB. Laat K, L en M de middens zijn van respectievelijk de lijnstukken BP, CQ en PQ en zij Γ de cirkel door K, L en M. Veronderstel dat de lijn PQ raakt aan de cirkel Γ .

Bewijs dat |OP| = |OQ|.

Opgave 3. Zij s_1, s_2, s_3, \ldots een strikt stijgende rij van positieve gehele getallen zodanig dat de deelrijen

$$s_{s_1}, s_{s_2}, s_{s_3}, \dots$$
 en $s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, \dots$

allebei rekenkundige rijen zijn.

Bewijs dat s_1, s_2, s_3, \ldots ook een rekenkundige rij is.

Language: Dutch

Beschikbare tijd: 4 uur en 30 minuten

Elk probleem is 7 punten waard

Language: Dutch

Day: **2**

Donderdag 16 juli 2009

Opgave 4. Zij ABC een driehoek met |AB| = |AC|. De binnenbissectrices van $\angle CAB$ en $\angle ABC$ snijden de zijden BC en CA respectievelijk in D en E. Zij K het middelpunt van de ingeschreven cirkel van de driehoek ADC. Veronderstel dat $\angle BEK = 45^{\circ}$.

Bepaal alle mogelijke waarden van $\angle CAB$.

Opgave 5. Bepaal alle functies $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ van de verzameling van positieve gehele getallen naar de verzameling van positieve gehele getallen, zodanig dat er voor alle positieve gehele getallen a en b een niet-ontaarde driehoek bestaat met zijdelengten

$$a, f(b) \text{ en } f(b+f(a)-1).$$

(Een driehoek heet niet-ontaard als zijn hoekpunten niet-collineair zijn.)

Opgave 6. Zij n een positief geheel getal en laat a_1, a_2, \ldots, a_n verschillende positieve gehele getallen zijn. Zij M een verzameling van n-1 positieve gehele getallen die niet het getal $s=a_1+a_2+\cdots+a_n$ bevat. Een sprinkhaan beweegt al springend over de getallenlijn (getallenas). Hij start in het punt 0 en maakt n sprongen naar rechts met lengten a_1, a_2, \ldots, a_n in een volgorde naar zijn keuze.

Bewijs dat de sprinkhaan die volgorde zodanig kan kiezen dat hij nooit op een punt van M terechtkomt.

Language: Dutch Beschikbare tijd: 4 uur