Final round **Dutch Mathematical Olympiad**

Friday 12 September 2014

Solutions

1. Suppose that (a, b, c) is a solution. From $a \leq b \leq c$ it follows that $abc = 2(a + b + c) \leq 6c$. Dividing by c yields $ab \leq 6$. We see that a = 1 or a = 2, because from $a \geq 3$ it would follow that $ab \ge a^2 \ge 9$.

We first consider the case a = 2.

From $ab \leq 6$ it follows that b = 2 or b = 3. In the former case, the equation abc = 2(a + b + c)yields 4c = 8 + 2c and hence c = 4. It is easy to check that the triple (2, 2, 4) we got is indeed a solution. In the latter case, we have 6c = 10 + 2c, hence $c = \frac{5}{2}$. Because c has to be an integer, this does not give rise to a solution.

Now we consider the case a = 1.

We get that bc = 2(1+b+c). We can rewrite this equation to obtain (b-2)(c-2) = 6. Remark that b-2 cannot be negative (and hence also c-2 cannot be negative). Otherwise, we would have b = 1, yielding (1-2)(c-2) = 6, from which it would follow that c = -4. However, c has to be positive.

There are only two ways to write 6 as a product of two non-negative integers, namely $6 = 1 \times 6$ and $6 = 2 \times 3$. This gives rise to two possibilities: b - 2 = 1 and c - 2 = 6, or b - 2 = 2 and c-2=3. It is easy to check that the corresponding triples (1,3,8) and (1,4,5) are indeed solutions.

Thus, the only solutions are (2, 2, 4), (1, 3, 8), and (1, 4, 5).

|DH| = |DG|. In other words, triangle DGH is isosceles.

2. Version for klas 5 & klas 4 en lager

We know that $\angle ABH = \angle CBG$, because these are opposite angles. Because triangles ABH and CBG are isosceles, we have $\angle AHB =$ $\angle ABH$ and $\angle CBG = \angle CGB$. Triangles ABH and CBG are similar (AA) and hence we have $\angle BAH = \angle BCG$. Because ABCDis a parallelogram, we have $\angle DAB = \angle DCB$ and hence $\angle DAH =$ $\angle DAB + \angle BAH = \angle DCB + \angle BCG = \angle DCG$ holds. Because ABCD is a parallelogram, we have |CD| = |AB| = |AH| and |AD| = |BC| = |CG|. Therefore, triangles DAH and GCD are congruent (SAS) and we have

2. Version for klas 6

Because triangle AUB is isosceles with top angle $\angle AUB = 90^{\circ}$, we have $\angle UAB = 45^{\circ}$. In the same way, we have $\angle CAW = 45^{\circ}$. Combining these two equalities, we find $\angle WAU = 45^{\circ} + \angle CAU =$ $\angle CAB$. By the Pythagorean theorem, we find $2|AW|^2 = |AW|^2 +$ $|CW|^2 = |AC|^2$ and hence $|AW| = \frac{1}{2}\sqrt{2} \cdot |AC|$. In the same way we find $|AU| = \frac{1}{2}\sqrt{2} \cdot |AB|$. Hence, triangles WAU and CAB are similar (SAS) with magnification factor $\frac{|AW|}{|AC|} = \frac{1}{2}\sqrt{2} = \frac{|AU|}{|AB|}$. In particular, we find $|WU| = \frac{1}{2}\sqrt{2} \cdot |BC| = |CV|$.

In the same way, we see that triangles VBU and CBA are similar and that $|VU| = \frac{1}{2}\sqrt{2} \cdot |AC| =$ |CW|. It follows that in quadrilateral UVCW the opposite sides have equal lengths, hence UVCW is a parallelogram. **3.** a) Suppose that the number of teams is 6. We shall derive a contradiction.

First remark that the number of games equals $\frac{6\times 5}{2} = 15$. Hence, the total number of points also equals 15.

Let team A be the (only) team with the lowest score. Team A has at most 1 point, because if team A had 2 or more points, then each of the other five teams would have at least 3 points, giving a total number of points that is at least 2 + 3 + 3 + 3 + 3 + 3 = 17. Each team on the second last place in the ranking has lost to team A, because this is the only team with a lower score. Hence, team A also has at least 1 point. We deduce that A has exactly 1 point and that there is exactly one team, say team B, in the second last place in the ranking.

Team B has at least 2 points and the remaining four teams, teams C, D, E and F, each have at least 3 points. The six teams together have at least 1+2+3+3+3+3=15 points. If team B had more than 2 points, or if any of the teams C through F had more than 3 points, then the total number of points would be greater than 15, which is impossible. Hence, team B has exactly 2 points and teams C through F each have exactly 3 points. The four teams C through F each lost to a team having a lower score (team A or team B). Hence, together, team A and team B must have won at least 4 games. This contradicts the fact that together they have only 1+2=3 points.

b) In the table below there is a possible outcome for 7 teams called A through G. In the row corresponding to a team, crosses indicate wins against other teams. Row 2, for example, indicates that team B won against teams C and D and obtained a total score of 2 points. Each team (except A) has indeed lost exactly one match against a team with a lower score. These matches are indicated in bold.

	A	В	C	D	E	F	G	Score
A	-	Х						1
B		-	\mathbf{X}	\mathbf{X}				2
C	Х		-		\mathbf{X}		\mathbf{X}	3
D	Х		X	-		X X		3
E	Х	Х		Х	-	Х		4
F	Х	X X	Х			-	Х	4
G	Х	Х		Х	Х		-	4

a) Without loss of generality, we may assume that a < b < c. The integers a and c are not divisible by p because that would imply that ac+1 is a multiple of p plus 1, hence not divisible by p. Since bc+1 and ac+1 are both divisible by p, their difference (bc+1) - (ac+1) = (b-a)c is divisible by p as well. Hence, since c is not divisible by p, it must be the case that b - a is divisible by p. Similarly, (ac+1) - (ab+1) = a(c-b) is divisible by p and since a is not divisible by p, this implies that c - b is divisible by p.
Thus, we find that b = a + (b - a) ≥ a + p and c = b + (c - b) ≥ a + 2p.

We have $a \ge 2$. Indeed, suppose that a = 1. Then, both integers b + 1 = ab + 1 and b - 1 = b - a are divisible by p, which implies that their difference (b + 1) - (b - 1) = 2 is divisible by p as well. However, p is an odd prime and can therefore not divide 2.

Using $a \ge 2$, $b \ge a + p$, and $c \ge a + 2p$, we conclude that

$$\frac{a+b+c}{3} \ge \frac{a+(a+p)+(a+2p)}{3} = p+a \ge p+2.$$

Remark. The above proof uses that fact that p is a prime to conclude that p divides b - a or c given that it divides the product (b - a)c. It turns out, that in the problem statement we can relax the requirement that p is a prime and only demand that p is an integer larger than 2. The problem statement remains valid, as follows from the following sketch of an alternative proof.

Again, we may assume that a < b < c. Observe that a(bc + 1) = abc + a, b(ac + 1) = abc + b, and c(ab + 1) = abc + c are different multiples of p. Hence, the differences (abc + b) - (abc + a) = b - a and (abc + c) - (abc + b) = c - b are multiples of p as well. Again, we can conclude that $b \ge a + p$ and $c \ge b + p \ge a + 2p$. The remainder of the proof is the same as in the first proof.

- b) Again, we may assume that a < b < c. In part a) we have seen that $\frac{a+b+c}{3} \ge \frac{a+(a+p)+(a+2p)}{3} = p+a \ge p+2$. We can only have $\frac{a+b+c}{3} = p+2$ if b = a + p, c = a + 2p, and a = 2. Since ab + 1 = 2(2+p) + 1 = 2p + 5 must be divisible by p, it follows that 5 is divisible by p. We conclude that p = 5, b = 7, and c = 12. The quadruple (p, a, b, c) = (5, 2, 7, 12) is indeed a Leiden quadruple, because ab + 1 = 15, ac + 1 = 25, and bc + 1 = 85 are all divisible by p. We conclude that p = 5 is the only number for which there is a Leiden quadruple (p, a, b, c) that satisfies $\frac{a+b+c}{3} = p+2$.
- 5. a) Consider a rectangle with sides of length $a \leq b$ inside the square. Since $b \leq 1$ and $2a+2b = \frac{5}{2}$ hold, we see that $a \geq \frac{1}{4}$. The area of the rectangle equals ab and is therefore at least $\frac{1}{4} \times \frac{1}{4} = \frac{1}{16}$. Hence, we can have no more than 16 rectangles inside the square without creating overlaps.
 - b) A solution is sketched in the figure below. The four outer rectangles, A through D, are equal with the shorter side having length x, and the longer side having length 1 x. Together they leave uncovered a square area with sides of length 1 2x. This area is then tiled by 26 equal rectangles. These have sides of length 1 2x and $\frac{1-2x}{26}$, and therefore have a circumference of $\frac{54}{26}(1-2x)$. To obtain a circumference of length 2, we take $x = \frac{1}{54}$.

		1 <i>x</i>	
х		A	
		1	
		2	
		3	
		•	
	В	•	D
		•	
		24	
		25	
		26	
		С	