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Solutions

1. Suppose that (a, b, c) is a solution. From a 6 b 6 c it follows that abc = 2(a + b + c) 6 6c.
Dividing by c yields ab 6 6. We see that a = 1 or a = 2, because from a > 3 it would follow
that ab > a2 > 9.

We first consider the case a = 2.
From ab 6 6 it follows that b = 2 or b = 3. In the former case, the equation abc = 2(a + b + c)
yields 4c = 8 + 2c and hence c = 4. It is easy to check that the triple (2, 2, 4) we got is indeed a
solution. In the latter case, we have 6c = 10 + 2c, hence c = 5

2 . Because c has to be an integer,
this does not give rise to a solution.

Now we consider the case a = 1.
We get that bc = 2(1 + b+ c). We can rewrite this equation to obtain (b− 2)(c− 2) = 6. Remark
that b− 2 cannot be negative (and hence also c− 2 cannot be negative). Otherwise, we would
have b = 1, yielding (1− 2)(c− 2) = 6, from which it would follow that c = −4. However, c has
to be positive.
There are only two ways to write 6 as a product of two non-negative integers, namely 6 = 1× 6
and 6 = 2 × 3. This gives rise to two possibilities: b − 2 = 1 and c − 2 = 6, or b − 2 = 2 and
c − 2 = 3. It is easy to check that the corresponding triples (1, 3, 8) and (1, 4, 5) are indeed
solutions.

Thus, the only solutions are (2, 2, 4), (1, 3, 8), and (1, 4, 5). �
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Version for klas 5 & klas 4 en lager
We know that ∠ABH = ∠CBG, because these are opposite angles.
Because triangles ABH and CBG are isosceles, we have ∠AHB =
∠ABH and ∠CBG = ∠CGB. Triangles ABH and CBG are
similar (AA) and hence we have ∠BAH = ∠BCG. Because ABCD
is a parallelogram, we have ∠DAB = ∠DCB and hence ∠DAH =
∠DAB + ∠BAH = ∠DCB + ∠BCG = ∠DCG holds. Because
ABCD is a parallelogram, we have |CD| = |AB| = |AH| and
|AD| = |BC| = |CG|. Therefore, triangles DAH and GCD are congruent (SAS) and we have
|DH| = |DG|. In other words, triangle DGH is isosceles. �
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Version for klas 6
Because triangle AUB is isosceles with top angle ∠AUB = 90◦,
we have ∠UAB = 45◦. In the same way, we have ∠CAW = 45◦.
Combining these two equalities, we find ∠WAU = 45◦ +∠CAU =
∠CAB. By the Pythagorean theorem, we find 2|AW |2 = |AW |2 +
|CW |2 = |AC|2 and hence |AW | = 1

2

√
2 · |AC|. In the same way

we find |AU | = 1
2

√
2 · |AB|. Hence, triangles WAU and CAB are

similar (SAS) with magnification factor |AW |
|AC| = 1

2

√
2 = |AU |

|AB| . In

particular, we find |WU | = 1
2

√
2 · |BC| = |CV |.

In the same way, we see that triangles V BU and CBA are similar and that |V U | = 1
2

√
2 · |AC| =

|CW |. It follows that in quadrilateral UV CW the opposite sides have equal lengths, hence
UV CW is a parallelogram. �



3. a) Suppose that the number of teams is 6. We shall derive a contradiction.

First remark that the number of games equals 6×5
2 = 15. Hence, the total number of points

also equals 15.

Let team A be the (only) team with the lowest score. Team A has at most 1 point, because
if team A had 2 or more points, then each of the other five teams would have at least 3
points, giving a total number of points that is at least 2 + 3 + 3 + 3 + 3 + 3 = 17. Each
team on the second last place in the ranking has lost to team A, because this is the only
team with a lower score. Hence, team A also has at least 1 point. We deduce that A has
exactly 1 point and that there is exactly one team, say team B, in the second last place in
the ranking.

Team B has at least 2 points and the remaining four teams, teams C, D, E and F , each
have at least 3 points. The six teams together have at least 1 + 2 + 3 + 3 + 3 + 3 = 15 points.
If team B had more than 2 points, or if any of the teams C through F had more than
3 points, then the total number of points would be greater than 15, which is impossible.
Hence, team B has exactly 2 points and teams C through F each have exactly 3 points.
The four teams C through F each lost to a team having a lower score (team A or team B).
Hence, together, team A and team B must have won at least 4 games. This contradicts the
fact that together they have only 1 + 2 = 3 points.

�

b) In the table below there is a possible outcome for 7 teams called A through G. In the row
corresponding to a team, crosses indicate wins against other teams. Row 2, for example,
indicates that team B won against teams C and D and obtained a total score of 2 points.
Each team (except A) has indeed lost exactly one match against a team with a lower score.
These matches are indicated in bold.

A B C D E F G Score

A - X 1
B - X X 2
C X - X X 3
D X X - X 3
E X X X - X 4
F X X X - X 4
G X X X X - 4

�

4. a) Without loss of generality, we may assume that a < b < c. The integers a and c are not divis-
ible by p because that would imply that ac+1 is a multiple of p plus 1, hence not divisible by
p. Since bc+1 and ac+1 are both divisible by p, their difference (bc+1)−(ac+1) = (b−a)c
is divisible by p as well. Hence, since c is not divisible by p, it must be the case that b− a
is divisible by p. Similarly, (ac + 1)− (ab + 1) = a(c− b) is divisible by p and since a is not
divisible by p, this implies that c− b is divisible by p.
Thus, we find that b = a + (b− a) > a + p and c = b + (c− b) > a + 2p.

We have a > 2. Indeed, suppose that a = 1. Then, both integers b + 1 = ab + 1 and
b− 1 = b− a are divisible by p, which implies that their differnce (b + 1)− (b− 1) = 2 is
divisible by p as well. However, p is an odd prime and can therefore not divide 2.

Using a > 2, b > a + p, and c > a + 2p, we conclude that

a + b + c

3
>

a + (a + p) + (a + 2p)

3
= p + a > p + 2.

�



Remark. The above proof uses that fact that p is a prime to conclude that p divides b− a
or c given that it divides the product (b− a)c. It turns out, that in the problem statement
we can relax the requirement that p is a prime and only demand that p is an integer larger
than 2. The problem statement remains valid, as follows from the following sketch of an
alternative proof.

Again, we may assume that a < b < c. Observe that a(bc + 1) = abc + a, b(ac + 1) =
abc + b, and c(ab + 1) = abc + c are different multiples of p. Hence, the differences
(abc + b) − (abc + a) = b − a and (abc + c) − (abc + b) = c − b are multiples of p as well.
Again, we can conclude that b > a + p and c > b + p > a + 2p. The remainder of the proof
is the same as in the first proof.

b) Again, we may assume that a < b < c. In part a) we have seen that a+b+c
3 > a+(a+p)+(a+2p)

3 =

p + a > p + 2. We can only have a+b+c
3 = p + 2 if b = a + p, c = a + 2p, and a = 2. Since

ab + 1 = 2(2 + p) + 1 = 2p + 5 must be divisible by p, it follows that 5 is divisible by p. We
conclude that p = 5, b = 7, and c = 12. The quadruple (p, a, b, c) = (5, 2, 7, 12) is indeed a
Leiden quadruple, because ab + 1 = 15, ac + 1 = 25, and bc + 1 = 85 are all divisible by p.

We conclude that p = 5 is the only number for which there is a Leiden quadruple (p, a, b, c)
that satisfies a+b+c

3 = p + 2. �

5. a) Consider a rectangle with sides of length a 6 b inside the square. Since b 6 1 and 2a+2b = 5
2

hold, we see that a > 1
4 . The area of the rectangle equals ab and is therefore at least

1
4 ×

1
4 = 1

16 . Hence, we can have no more than 16 rectangles inside the square without
creating overlaps. �

b) A solution is sketched in the figure below. The four outer rectangles, A through D, are equal
with the shorter side having length x, and the longer side having length 1− x. Together
they leave uncovered a square area with sides of length 1 − 2x. This area is then tiled
by 26 equal rectangles. These have sides of length 1− 2x and 1−2x

26 , and therefore have a
circumference of 54

26(1− 2x). To obtain a circumference of length 2, we take x = 1
54 .
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