Final round
 Dutch Mathematical Olympiad

Friday 12 September 2014
Solutions

1. Suppose that (a, b, c) is a solution. From $a \leqslant b \leqslant c$ it follows that $a b c=2(a+b+c) \leqslant 6 c$. Dividing by c yields $a b \leqslant 6$. We see that $a=1$ or $a=2$, because from $a \geqslant 3$ it would follow that $a b \geqslant a^{2} \geqslant 9$.

We first consider the case $a=2$.
From $a b \leqslant 6$ it follows that $b=2$ or $b=3$. In the former case, the equation $a b c=2(a+b+c)$ yields $4 c=8+2 c$ and hence $c=4$. It is easy to check that the triple $(2,2,4)$ we got is indeed a solution. In the latter case, we have $6 c=10+2 c$, hence $c=\frac{5}{2}$. Because c has to be an integer, this does not give rise to a solution.

Now we consider the case $a=1$.
We get that $b c=2(1+b+c)$. We can rewrite this equation to obtain $(b-2)(c-2)=6$. Remark that $b-2$ cannot be negative (and hence also $c-2$ cannot be negative). Otherwise, we would have $b=1$, yielding $(1-2)(c-2)=6$, from which it would follow that $c=-4$. However, c has to be positive.
There are only two ways to write 6 as a product of two non-negative integers, namely $6=1 \times 6$ and $6=2 \times 3$. This gives rise to two possibilities: $b-2=1$ and $c-2=6$, or $b-2=2$ and $c-2=3$. It is easy to check that the corresponding triples $(1,3,8)$ and $(1,4,5)$ are indeed solutions.

Thus, the only solutions are $(2,2,4),(1,3,8)$, and $(1,4,5)$.

2. Version for klas $5 \&$ klas 4 en lager

We know that $\angle A B H=\angle C B G$, because these are opposite angles. Because triangles $A B H$ and $C B G$ are isosceles, we have $\angle A H B=$ $\angle A B H$ and $\angle C B G=\angle C G B$. Triangles $A B H$ and $C B G$ are similar (AA) and hence we have $\angle B A H=\angle B C G$. Because $A B C D$ is a parallelogram, we have $\angle D A B=\angle D C B$ and hence $\angle D A H=$ $\angle D A B+\angle B A H=\angle D C B+\angle B C G=\angle D C G$ holds. Because $A B C D$ is a parallelogram, we have $|C D|=|A B|=|A H|$ and
 $|A D|=|B C|=|C G|$. Therefore, triangles $D A H$ and $G C D$ are congruent (SAS) and we have $|D H|=|D G|$. In other words, triangle $D G H$ is isosceles.

2. Version for klas 6

Because triangle $A U B$ is isosceles with top angle $\angle A U B=90^{\circ}$, we have $\angle U A B=45^{\circ}$. In the same way, we have $\angle C A W=45^{\circ}$. Combining these two equalities, we find $\angle W A U=45^{\circ}+\angle C A U=$ $\angle C A B$. By the Pythagorean theorem, we find $2|A W|^{2}=|A W|^{2}+$ $|C W|^{2}=|A C|^{2}$ and hence $|A W|=\frac{1}{2} \sqrt{2} \cdot|A C|$. In the same way we find $|A U|=\frac{1}{2} \sqrt{2} \cdot|A B|$. Hence, triangles $W A U$ and $C A B$ are similar (SAS) with magnification factor $\frac{|A W|}{|A C|}=\frac{1}{2} \sqrt{2}=\frac{|A U|}{|A B|}$. In
 particular, we find $|W U|=\frac{1}{2} \sqrt{2} \cdot|B C|=|C V|$.
In the same way, we see that triangles $V B U$ and $C B A$ are similar and that $|V U|=\frac{1}{2} \sqrt{2} \cdot|A C|=$ $|C W|$. It follows that in quadrilateral $U V C W$ the opposite sides have equal lengths, hence $U V C W$ is a parallelogram.
3. a) Suppose that the number of teams is 6 . We shall derive a contradiction.

First remark that the number of games equals $\frac{6 \times 5}{2}=15$. Hence, the total number of points also equals 15 .
Let team A be the (only) team with the lowest score. Team A has at most 1 point, because if team A had 2 or more points, then each of the other five teams would have at least 3 points, giving a total number of points that is at least $2+3+3+3+3+3=17$. Each team on the second last place in the ranking has lost to team A, because this is the only team with a lower score. Hence, team A also has at least 1 point. We deduce that A has exactly 1 point and that there is exactly one team, say team B, in the second last place in the ranking.
Team B has at least 2 points and the remaining four teams, teams C, D, E and F, each have at least 3 points. The six teams together have at least $1+2+3+3+3+3=15$ points. If team B had more than 2 points, or if any of the teams C through F had more than 3 points, then the total number of points would be greater than 15 , which is impossible. Hence, team B has exactly 2 points and teams C through F each have exactly 3 points. The four teams C through F each lost to a team having a lower score (team A or team B). Hence, together, team A and team B must have won at least 4 games. This contradicts the fact that together they have only $1+2=3$ points.
b) In the table below there is a possible outcome for 7 teams called A through G. In the row corresponding to a team, crosses indicate wins against other teams. Row 2, for example, indicates that team B won against teams C and D and obtained a total score of 2 points. Each team (except A) has indeed lost exactly one match against a team with a lower score. These matches are indicated in bold.

	A	B	C	D	E	F	G	Score
A	-	\mathbf{X}						1
B		-	\mathbf{X}	\mathbf{X}				2
C	X		-		\mathbf{X}		\mathbf{X}	3
D	X		X	-		\mathbf{X}		3
E	X	X		X	-	X		4
F	X	X	X			-	X	4
G	X	X		X	X		-	4

4. a) Without loss of generality, we may assume that $a<b<c$. The integers a and c are not divisible by p because that would imply that $a c+1$ is a multiple of p plus 1 , hence not divisible by p. Since $b c+1$ and $a c+1$ are both divisible by p, their difference $(b c+1)-(a c+1)=(b-a) c$ is divisible by p as well. Hence, since c is not divisible by p, it must be the case that $b-a$ is divisible by p. Similarly, $(a c+1)-(a b+1)=a(c-b)$ is divisible by p and since a is not divisible by p, this implies that $c-b$ is divisible by p.
Thus, we find that $b=a+(b-a) \geqslant a+p$ and $c=b+(c-b) \geqslant a+2 p$.

We have $a \geqslant 2$. Indeed, suppose that $a=1$. Then, both integers $b+1=a b+1$ and $b-1=b-a$ are divisible by p, which implies that their differnce $(b+1)-(b-1)=2$ is divisible by p as well. However, p is an odd prime and can therefore not divide 2.

Using $a \geqslant 2, b \geqslant a+p$, and $c \geqslant a+2 p$, we conclude that

$$
\frac{a+b+c}{3} \geqslant \frac{a+(a+p)+(a+2 p)}{3}=p+a \geqslant p+2
$$

Remark. The above proof uses that fact that p is a prime to conclude that p divides $b-a$ or c given that it divides the product $(b-a) c$. It turns out, that in the problem statement we can relax the requirement that p is a prime and only demand that p is an integer larger than 2. The problem statement remains valid, as follows from the following sketch of an alternative proof.
Again, we may assume that $a<b<c$. Observe that $a(b c+1)=a b c+a, b(a c+1)=$ $a b c+b$, and $c(a b+1)=a b c+c$ are different multiples of p. Hence, the differences $(a b c+b)-(a b c+a)=b-a$ and $(a b c+c)-(a b c+b)=c-b$ are multiples of p as well. Again, we can conclude that $b \geqslant a+p$ and $c \geqslant b+p \geqslant a+2 p$. The remainder of the proof is the same as in the first proof.
b) Again, we may assume that $a<b<c$. In part a) we have seen that $\frac{a+b+c}{3} \geqslant \frac{a+(a+p)+(a+2 p)}{3}=$ $p+a \geqslant p+2$. We can only have $\frac{a+b+c}{3}=p+2$ if $b=a+p, c=a+2 p$, and $a=2$. Since $a b+1=2(2+p)+1=2 p+5$ must be divisible by p, it follows that 5 is divisible by p. We conclude that $p=5, b=7$, and $c=12$. The quadruple $(p, a, b, c)=(5,2,7,12)$ is indeed a Leiden quadruple, because $a b+1=15, a c+1=25$, and $b c+1=85$ are all divisible by p. We conclude that $p=5$ is the only number for which there is a Leiden quadruple (p, a, b, c) that satisfies $\frac{a+b+c}{3}=p+2$.
5. a) Consider a rectangle with sides of length $a \leqslant b$ inside the square. Since $b \leqslant 1$ and $2 a+2 b=\frac{5}{2}$ hold, we see that $a \geqslant \frac{1}{4}$. The area of the rectangle equals $a b$ and is therefore at least $\frac{1}{4} \times \frac{1}{4}=\frac{1}{16}$. Hence, we can have no more than 16 rectangles inside the square without creating overlaps.
b) A solution is sketched in the figure below. The four outer rectangles, A through D, are equal with the shorter side having length x, and the longer side having length $1-x$. Together they leave uncovered a square area with sides of length $1-2 x$. This area is then tiled by 26 equal rectangles. These have sides of length $1-2 x$ and $\frac{1-2 x}{26}$, and therefore have a circumference of $\frac{54}{26}(1-2 x)$. To obtain a circumference of length 2 , we take $x=\frac{1}{54}$.

