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Solutions

. Suppose that (a,b,c) is a solution. From a < b < c it follows that abc = 2(a + b + ¢) < 6¢.
Dividing by c yields ab < 6. We see that a = 1 or a = 2, because from a > 3 it would follow
that ab > a? > 9.

We first consider the case a = 2.

From ab < 6 it follows that b = 2 or b = 3. In the former case, the equation abc = 2(a + b + ¢)
yields 4¢ = 8 4+ 2¢ and hence ¢ = 4. Tt is easy to check that the triple (2,2,4) we got is indeed a
solution. In the latter case, we have 6¢ = 10 + 2¢, hence ¢ = 2. Because ¢ has to be an integer,

2
this does not give rise to a solution.

Now we consider the case a = 1.

We get that be = 2(1 + b+ ¢). We can rewrite this equation to obtain (b —2)(¢ —2) = 6. Remark
that b — 2 cannot be negative (and hence also ¢ — 2 cannot be negative). Otherwise, we would
have b = 1, yielding (1 — 2)(c — 2) = 6, from which it would follow that ¢ = —4. However, ¢ has
to be positive.

There are only two ways to write 6 as a product of two non-negative integers, namely 6 =1 x 6
and 6 = 2 x 3. This gives rise to two possibilities: b —2=1and ¢c—2 =6, or b—2 = 2 and
¢ —2 = 3. It is easy to check that the corresponding triples (1,3,8) and (1,4,5) are indeed
solutions.

Thus, the only solutions are (2,2,4), (1,3,8), and (1,4, 5). O

. Version for klas 5 & klas 4 en lager

We know that ZABH = Z/CBG, because these are opposite angles.
Because triangles ABH and C'BG are isosceles, we have ZAHB =
/ABH and ZCBG = ZCGB. Triangles ABH and CBG are
similar (AA) and hence we have /ZBAH = Z/BCG. Because ABCD
is a parallelogram, we have /ZDAB = Z/DCB and hence ZDAH =
/DAB + /BAH = /DCB + /BCG = /ZDCG holds. Because
ABCD is a parallelogram, we have |CD| = |AB| = |AH| and
|AD| = |BC| = |CG]|. Therefore, triangles DAH and GCD are congruent (SAS) and we have
|DH| = |DG|. In other words, triangle DG H is isosceles. O

. Version for klas 6

Because triangle AUB is isosceles with top angle ZAUB = 90°,
we have ZUAB = 45°. In the same way, we have ZC AW = 45°.
Combining these two equalities, we find ZW AU = 45° + ZC AU =
Z/CAB. By the Pythagorean theorem, we find 2|AW |2 = [AW|? +
|CW|? = |AC|? and hence |[AW| = 3v/2 - |AC|. In the same way
we find |AU| = $v/2 - |AB|. Hence, triangles WAU and CAB are

similar (SAS) with magnification factor ||’j;g|| =3V2= %. In

particular, we find [WU| = 3v2-|BC| = |CV/|.

In the same way, we see that triangles V BU and CBA are similar and that |[VU| = 2v/2-|AC| =
|CW|. It follows that in quadrilateral UV CW the opposite sides have equal lengths, hence
UV CW is a parallelogram. O
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Suppose that the number of teams is 6. We shall derive a contradiction.

First remark that the number of games equals % = 15. Hence, the total number of points

also equals 15.

Let team A be the (only) team with the lowest score. Team A has at most 1 point, because
if team A had 2 or more points, then each of the other five teams would have at least 3
points, giving a total number of points that is at least 2+3+3+4+ 3+ 3+ 3 = 17. Each
team on the second last place in the ranking has lost to team A, because this is the only
team with a lower score. Hence, team A also has at least 1 point. We deduce that A has
exactly 1 point and that there is exactly one team, say team B, in the second last place in
the ranking.

Team B has at least 2 points and the remaining four teams, teams C, D, E and F', each
have at least 3 points. The six teams together have at least 1 4+2+4 34343+ 3 = 15 points.
If team B had more than 2 points, or if any of the teams C' through F had more than
3 points, then the total number of points would be greater than 15, which is impossible.
Hence, team B has exactly 2 points and teams C through F' each have exactly 3 points.
The four teams C' through F' each lost to a team having a lower score (team A or team B).
Hence, together, team A and team B must have won at least 4 games. This contradicts the
fact that together they have only 1 + 2 = 3 points.

O

In the table below there is a possible outcome for 7 teams called A through G. In the row
corresponding to a team, crosses indicate wins against other teams. Row 2, for example,
indicates that team B won against teams C and D and obtained a total score of 2 points.
Each team (except A) has indeed lost exactly one match against a team with a lower score.
These matches are indicated in bold.

A B C D E F G| Score
Al - X 1
B - X X 2
C | X - X X |3
D | X X - X 3
EF|X X X - X 4
F|X X X - X |4
G| X X X X -1 4

O

Without loss of generality, we may assume that a < b < ¢. The integers a and ¢ are not divis-
ible by p because that would imply that ac+1 is a multiple of p plus 1, hence not divisible by
p. Since bc+ 1 and ac+1 are both divisible by p, their difference (bc+1) —(ac+1) = (b—a)c
is divisible by p as well. Hence, since c is not divisible by p, it must be the case that b — a
is divisible by p. Similarly, (ac+ 1) — (ab+ 1) = a(c — b) is divisible by p and since a is not
divisible by p, this implies that ¢ — b is divisible by p.

Thus, we find that b=a+ (b—a) >a+pand c=b+ (c—b) > a+ 2p.

We have a > 2. Indeed, suppose that a = 1. Then, both integers b + 1 = ab + 1 and
b—1=10b— a are divisible by p, which implies that their differnce (b+ 1) — (b—1) =2 is
divisible by p as well. However, p is an odd prime and can therefore not divide 2.

Using a > 2, b > a+ p, and ¢ > a + 2p, we conclude that

atbte a+ (a+p)+(a+2p)
37 3

=ptaz=p+2.



Remark. The above proof uses that fact that p is a prime to conclude that p divides b — a
or ¢ given that it divides the product (b — a)c. It turns out, that in the problem statement
we can relax the requirement that p is a prime and only demand that p is an integer larger
than 2. The problem statement remains valid, as follows from the following sketch of an
alternative proof.

Again, we may assume that a < b < c¢. Observe that a(bc + 1) = abc + a, b(ac + 1) =
abc + b, and c(ab + 1) = abe + ¢ are different multiples of p. Hence, the differences
(abc 4+ b) — (abc + a) = b — a and (abc + ¢) — (abc + b) = ¢ — b are multiples of p as well.
Again, we can conclude that b > a+p and ¢ 2 b+ p = a+ 2p. The remainder of the proof
is the same as in the first proof.

Again, we may assume that a < b < ¢. In part a) we have seen that “+b+c > at(atp )+(a+2p ) —

p+a > p+ 2. We can only have a+b+c =p+2ifb=a+p, c-a+2p, and a = 2 Since
ab+1=2(2+p)+1=2p+5 must be divisible by p, it follows that 5 is divisible by p. We
conclude that p =5, b =7, and ¢ = 12. The quadruple (p,a,b,c) = (5,2,7,12) is indeed a
Leiden quadruple, because ab+ 1 = 15, ac+ 1 = 25, and bc + 1 = 85 are all divisible by p.
We conclude that p =5 is the only number for which there is a Leiden quadruple (p, a, b, ¢)
that satisfies %HC =p+2. O

Consider a rectangle with sides of length a < b inside the square. Since b < 1 and 2a+2b = g
hold, we see that a > i. The area of the rectangle equals ab and is therefore at least
1,1 1

7 X 4 = ig- Hence, we can have no more than 16 rectangles inside the square without

creating overlaps. O
A solution is sketched in the figure below. The four outer rectangles, A through D, are equal
with the shorter side having length z, and the longer side having length 1 — . Together
they leave uncovered a square area with sides of length 1 — 2z. This area is then tiled
by 26 equal rectangles. These have sides of length 1 — 2z and 15

26 ’
circumference of 5 (1 —2z). To obtain a circumference of length 2, we take z = 5—14.
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