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Solutions

1. We recognize triangle ABC to be half an equilateral triangle. This implies that |BC| = 2|AC| =
12. The Pythagorean theorem yields: |AB| =

√
|BC|2 − |AC|2 =

√
108 = 6

√
3.
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Denote the pairwise tangent points of the three circles by D, E and F (see
figure) and the radii of the three circles by rA, rB and rC . The strategy will
be to determine the area of the three circular sectors and subtract them
from the area of triangle ABC.

We see that 2rA = (rA+rC)+(rA+rB)−(rB +rC) = |AC|+ |AB|−|BC| =
6
√

3 − 6, so rA = 3
√

3 − 3. It follows that rB = 6
√

3 − rA = 3
√

3 + 3 and
rC = 6− rA = 9− 3

√
3.

The area of a circle of radius r equals πr2. Therefore, the area of circular
sector AFE equals 90

360 · πr
2
A, or 1

4π(36− 18
√

3) = 9π− 9
2

√
3π. For the area

of circular sectors BDF and CED we find, respectively, 30
360πr

2
B = 3π + 3

2

√
3π and 60

360πr
2
C =

18π − 9
√

3π.

Since ABC has an area of 1
2 · |AB| · |AC| = 18

√
3, we obtain a value of 18

√
3− (9π − 9

2

√
3π)−

(3π + 3
2

√
3π)− (18π − 9

√
3π) = 18

√
3− 30π + 12

√
3π for the area of the gray region. �

2. (a) Suppose that k = m+ (m+ 1) + · · ·+ (n− 1) +n is a polite number. The sum formula for
arithmetic sequences gives k = 1

2(m + n)(n −m + 1). As m and n are different positive
numbers, m+ n > 3 and (n−m) + 1 > 2 must hold.

Since (m+ n) + (n−m+ 1) = 2n+ 1 is odd, one of the numbers m+ n and n−m+ 1 is
odd. Hence 2k = (m+ n)(n−m+ 1) has an odd divisor (greater than 1) and is therefore
not a power of two. This implies that k is not a power of two either.

We conclude that no number can be both polite and a power of two.

(b) Suppose that k is a positive integer, not a power of two. We will show k to be a polite
number. Collecting all factors 2, we can write k = c · 2d, where c is odd and d > 0 is
a nonnegative integer. The assumption that k is not a power of two, means that c > 1.
We need to find n > m such that m + · · · + n = 1

2(m + n)(n − m + 1) = c · 2d, or
(m+ n) · (n−m+ 1) = c · 2d+1. We can achieve this by choosing m and n in such a way
that m + n = c and n −m + 1 = 2d+1, or conversely: m + n = 2d+1 and n −m + 1 = c.
To ensure that m will be positive, we consider two cases.
For c > 2d+1 we solve: m+n = c, n−m+ 1 = 2d+1. This gives m = (c− 2d+1 + 1)/2 and
n = (c+ 2d+1 − 1)/2. Obviously, n > m (since 2d+1 > 2). Both m and n are integers (the
numerators are even since c is odd) and positive by the assumption c > 2d+1.
For c < 2d+1 we solve: m+n = 2d+1, n−m+ 1 = c. This gives m = (2d+1− c+ 1)/2 and
n = (2d+1 + c − 1)/2. Clearly, n > m holds (since c > 1) and both m and n are positive
integers. �
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Since AO and XZ are parallel, ∠OAB = ∠ZXY are corresponding angles.
Similarly, since BO and Y Z are parallel, ∠ABO = ∠XY Z holds. We
deduce that 4OAB ∼ 4ZXY (equal angles). Hence there is a scaling
factor u such that a = u|XZ| and b = u|Y Z|. Using similar arguments
we find that 4OCD ∼ 4XY Z and 4OEF ∼ 4Y ZX. So there are
scaling factors v and w such that c = v|XY |, d = v|XZ|, e = w|Y Z| and
f = w|XY |.
We now see that a·c·e = uvw·|XY |·|Y Z|·|ZX| = b·d·f . This implies that a·b·c·d·e·f = (a·c·e)2,
which is a perfect square since a, c and e are integers. �

4. (a) Suppose that (x, y) is such a pair and consider the integers a = x + 3y and b = 3x + y.
From 0 < x, y < 1 it follows that 0 < a, b < 4, or: 1 6 a, b 6 3.

Conversely, let a and b be integers such that 1 6 a, b 6 3. There is a unique pair of numbers
(x, y) that satisfies a = x + 3y and b = 3x + y. Indeed, combining the two equations, we
get 3b− a = 3(3x+ y)− (x+ 3y) = 8x and 3a− b = 8y. In other words x = (3b− a)/8 and
y = (3a− b)/8 (and these x and y do satisfy the two equations). If we substitute 1, 2, 3 for
a and b, we obtain the folowing nine pairs (x, y):

(28 ,
2
8), (58 ,

1
8), (88 ,

0
8), (18 ,

5
8), (48 ,

4
8), (78 ,

3
8), (08 ,

8
8), (38 ,

7
8), (68 ,

6
8).

The condition 0 < x, y < 1 rules out the two candidates (x, y) = (88 ,
0
8) and (x, y) = (08 ,

8
8).

This leaves the 7 pairs we were asked to find.

(b) Suppose that 0 < x, y < 1 holds and that a = x+my and b = mx+ y are integers. Then
1 6 a, b 6 m holds.

Given integers a and b with 1 6 a, b 6 m, there is a unique pair (x, y) for which x+my = a
and mx + y = b hold. Indeed, combining the two equalities gives : mb − a = (m2 − 1)x
and ma− b = (m2 − 1)y, or: x = (mb− a)/(m2 − 1) and y = (ma− b)/(m2 − 1). These x
and y indeed satisfy the two equations.

For given a and b, we determine whether the corresponding numbers x and y satisfy
0 < x, y < 1. From 1 6 a, b 6 m it follows that x > (m · 1 − m)/(m2 − 1) = 0 and
x 6 (m ·m− 1)/(m2 − 1) = 1. The cases x = 0 and x = 1 exactly correspond to (a, b) =
(m, 1) and (a, b) = (1,m) respectively. Similarly, 0 < y < 1 holds, unless (a, b) = (1,m) or
(a, b) = (m, 1). Among the m2 possible pairs (a, b), there are exactly two for which (x, y)
is not a solution. In total there are m2 − 2 solutions (x, y).

From m2 − 2 = 119, we see that m = 11. �

5. A strategy that guarantees a win for Amber is as follows. In Amber’s turn, she splits every pile
with an even number of coins (say 2k) in two piles with an odd number of coins: 1 coin and
2k − 1 coin respectively. The piles having an odd number of coins, she leaves untouched. So in
her first turn, she created one pile of 1 coin and one of 2009 coins.

When Brian gets to make a move, all piles will have an odd number of coins. He is therefore
forced to split an odd pile, creating a new pile with an even number of coins. This implies that
Amber, in het next turn, can continue her strategy, since there will be at least one even pile.

With each turn, the number of piles increases, so after at most 2009 turns, the game is over.
Since Brian always creates an even pile, the game cannot end during his turn. Therefore, it will
be Amber who wins the game. �
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