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Introduction

In 2011 the Dutch Mathematical Olympiad celebrated its 50th anniversary.
The most special fact in this anniversary year was that we hosted the
International Mathematical Olympiad (IMO) for the first time. From 16
until 24 July, 564 contestants from 101 countries came to Amsterdam to
test their mathematical talents and to enjoy the social events. More than
300 guides, invigilators, coordinators and many other organisers worked
together to make the event a big success.

In the meantime the entire selection process for IMO 2012 started with the
first round on 4 February 2011, held at the participating schools. The paper
consisted of eight multiple choice questions and four open-answer questions,
to be solved within 2 hours. In total 5258 students of 245 secondary schools
participated in this first round.

Those 799 students from grade 5 (4, 6 3) that scored 15 (13, 11) points or
more on the first round (out of a maximum of 36 points) were invited to the
second round, which was held in March at ten universities in the country.
This round contained five open-answer questions, and two problems for
which the students had to give extensive solutions and proofs. The contest
lasted 2.5 hours.

Those students from grade 5 (4, 6 3) that scored 32 (28, 22) points or
more on the second round (out of a maximum of 40 points) were invited to
the final round. Also some outstanding participants in the Kangaroo math
contest or the Pythagoras Olympiad were invited. In total 149 students
were invited. They also received an invitation to some training sessions at
the ten universities, in order to prepare them for their participation in the
final round.

Out of those 149, in total 142 participated in the final round on 16 Septem-
ber 2011 at Eindhoven University of Technology. This final round contained
five problems for which the students had to give extensive solutions and
proofs. They were allowed 3 hours for this round. After the prizes had been
awarded in the beginning of November, the Dutch Mathematical Olympiad
concluded its 50th edition 2011.

The 31 most outstanding candidates of the Dutch Mathematical Olympiad
2011 were invited to an intensive seven-month training programme, con-
sisting of weekly problem sets. Also, the students met twice for a three-day
training camp, three times for a day at the university, and finally for a

1



six-day training camp in the beginning of June.

Among the participants of the training programme, there were some extra
girls, as this year we would participate in the first European Girls’ Mathe-
matical Olympiad (EGMO). In total there were eight girls competing to be
in the EGMO team. The team of four girls was selected by a selection test,
held on 16 March 2012. They attended the EGMO in Cambridge from 10
until 16 April, and the team returned with two honourable mentions and
a bronze medal.

The same selection test was used to determine the ten students partici-
pating in the Benelux Mathematical Olympiad (BxMO), held in Namur,
Belgium, from 20 until 22 April. The Dutch team managed to come first
in the country ranking, and received two honourable mentions, two bronze
medals, three silver medals and two gold medals.

In June the team for the International Mathematical Olympiad 2012 was
selected by two team selection tests on 6 and 9 June 2012. A seventh,
young, promising student was selected to accompany the team to the IMO
as an observer C. The team had a training camp in Buenos Aires, from 29
June until 8 July, together with the team from New Zealand.

For younger students the Junior Mathematical Olympiad was held in Oc-
tober 2011 at the VU University Amsterdam. The students invited to
participate in this event were the 30 best students of grade 1, grade 2 and
grade 3 of the popular Kangaroo math contest. The competition consisted
of two one-hour parts, one with fifteen multiple choice questions and one
with ten open-answer questions. The goal of this Junior Mathematical
Olympiad is to scout talent and to stimulate them to participate in the
first round of the Dutch Mathematical Olympiad.

We are grateful to Jinbi Jin and Raymond van Bommel for the composition
of this booklet and the translation into English of most of the problems and
the solutions.
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Dutch delegation

The Dutch team for IMO 2012 in Argentina consists of

• Guus Berkelmans (18 y.o., bronze medal at IMO 2010)

• Jeroen Huijben (16 y.o., observer C at IMO 2010, bronze medal at
IMO 2011)

• Matthijs Lip (16 y.o.)

• Michelle Sweering (15 y.o.)

• Jeroen Winkel (15 y.o., observer C at IMO 2011)

• Jetze Zoethout (17 y.o., bronze medal at IMO 2011)

We bring as observer C the promising young student

• Peter Gerlagh (15 y.o.)

The team is coached by

• Quintijn Puite (team leader), Eindhoven University of Technology

• Birgit van Dalen (deputy leader), Aloysius College The Hague
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First Round, February 2011

Problems

A-problems

A1. 2

0

1

1

2 0 1 1

The squares of a 4×4-field are colored black or white.
The number next to each row and below each column
indicates how many squares in that row or column
have to be black.
In how many ways can the field be colored?

A) 0 B) 1 C) 4 D) 5 E) 8

A2. Today is 4 February 2011. This date is written down as 04-02-2011. In
this problem we consider the first day from now on, of which the date is
written using eight different digits.
What is the month of that date?

A) January B) March C) June
D) October E) December

A3.

E

D F

G

AB

C

A heptagonABCDEFG is given, all sides of which
have length 2. Moreover: ∠E = 120◦, ∠C =
∠G = 90◦ and ∠A = ∠B = ∠D = ∠F .
What is the area of the heptagon?

A) 10 + 2
√

2 B) 8 + 3
√

3 C) 14
D) 10 + 2

√
6 E) 8 + 3

√
6

A4. Alice, Brian and Carl have participated in a math contest consisting of 12
problems. Before the contest they were pessimistic and made the following
statements.
Alice: “Brian will answer at least two more problems correctly than I will.”
Brian: “I will not answer more than five problems correctly.”
Carl: “I will at the most answer correctly as many problems as Alice.”
Their teacher tried to encourage them by saying: “Together, you will an-
swer more than 18 problems correctly.” Afterwards, it transpired that all
three students and their teacher had made a wrong prediction.
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Who has/have answered the least number of problems correctly?

A) only Alice D) both Alice and Brian
B) only Brian E) you cannot be sure of that
C) only Carl

A5. Jack wants to write down some of the numbers from 1 to 100 on a piece of
paper. He wants to do it in such a way, that no two numbers on the piece
of paper will add up to 125.
How many numbers, at most, can Jack write down on his piece op paper?

A) 50 B) 61 C) 62 D) 63 E) 64

A6. The number a = 11 . . . 111 consists of 2011 digits ‘1’.
What is the remainder of a when divided by 37?

A) 0 B) 1 C) 3 D) 7 E) 11

A7.

Bob Ann

Ann and Bob are sitting in a fairground attraction.
They move in circles around the same center and in
the same direction. Ann moves around once every
20 seconds, Bob once every 28 seconds. At a certain
moment they are at minimum distance from each
other (see figure).
How many seconds does it take, from that moment
on, until Ann and Bob are at maximum distance from each other?

A) 22.5 B) 35 C) 40 D) 49 E) 70

A8. A

B

C

D

The vertices of a regular 15-gon are connected as in
the figure. (Mind you: the sizes in the figure are not
entirely correct!)
What is the size of the angle, indicated by the arc,
between AC and BD?

A) 130◦ B) 132◦ C) 135◦ D) 136◦ E) 137.5◦

B-problems
The answer to each B-problem is a number.

B1. A number x satisfies: x =
1

1 + x
. Determine x− 1

x
. Simplify your answer

as much as possible.
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B2. An escalator goes up from the first to the second floor of a department
store. Dion, while going up the escalator, also walks at a constant pace.
Raymond, going in the opposite direction, tries to walk downwards, from
the second to the first floor, on the same escalator. He walks at the same
pace as Dion. They both take one step of the escalator at a time. Dion
arrives at the second floor after exactly 12 steps; Raymond arrives at the
first floor after exactly 60 steps.
How many steps would it take Dion to get upstairs if the escalator would
stand still?

B3. Six scouts are on a scouting expedition. They are going to the woods on
Saturday, and into the mountains on Sunday. On both days, they have
to go in pairs. The scoutmaster wants to group them into pairs for both
expeditions in such a way that nobody has the same partner on the second
day as on the first day.
In how many ways can he do that?

B4.

A B

C
In the figure you see a pointed arch ABC and its
inscribed circle. The pointed arch consists of a line
segment AB of length 1, a circular arc BC with cen-
ter A and a circular arc AC with center B.
What is the radius of the inscribed circle of this
pointed arch?

Solutions

A-problems

A1.

0

2

1

1

0

12 1

D) 5 Notice that all squares in the second

row and second column must be white. We consider
two cases, depending on the color of the upper left
square. If this square is white, then the last two
squares in the first row and column must be black.
This determines the coloring. See the top figure.
If this square is black, both the first row and first
column require exactly one more black square. For
each of the resulting 2×2 = 4 choices, there is exactly
one solution. Indeed, one row and one column are
left that need an additional black square.
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Therefore the square at the intersection of this row
and column must be colored black, and the remain-
ing squares must be colored white, see bottom four figures.

A2. C) June The year of the date we are looking for, starts with a digit

2 or higher. We will look for the first date of which the year starts with
digit 2, and all eight digits are different. If such a date exists, we are done.
For the month, both 11 (two equal digits) and 12 (digit 2 is already used)
can be rejected. Therefore, the month (01 to 10) contains digit 0. This
implies that the day starts with digit 1 or 3. In the second case, it’s the
31st, since digit 0 is already taken. In both cases, the day contains digit
1. Both digit 0 and 1 being taken, the smallest possible year is 2345. The
smallest number we can use for the month is then 06, that is, June. Finally,
the day will be the 17th. Observe that the constructed date 17-06-2345
consists of eight different digits, as required.

A3.

E

D F

G

AB

C

M

B) 8 + 3
√

3 The heptagon can be partitioned into

two squares and three equilateral triangles, all with
sides of length 2. We know that each of the squares
has an area of 4. Using the Pythagorean theorem,
we can compute the height of triangle ABM to be√

22 − 1 =
√

3. Hence, the area of the triangle equals
1
2 ·2 ·
√

3 =
√

3. Summing up the areas of the squares

and triangles, we arrive at 2 · 4 + 3 ·
√

3 = 8 + 3
√

3
for the area of the heptagon.

A4. A) only Alice As Brian’s prediction was wrong, he has at least six correct

answers. Alice’s prediction was wrong as well, which implies that Brian
answered at the most one more question correctly than Alice. Hence, Alice
has at least five correct answers. Since Carl made a wrong prediction, he
answered more questions correctly than Alice, hence at least six. Alice
cannot have more than five correct answers. Indeed, then Carl would have
seven correct answers, leading to a total of at least 6 + 6 + 7 = 19 correct
answers, as the teacher (incorrectly) predicted. We can conclude that Alice
answered five questions correctly. Since the others have at least six correct
answers, Alice is the only one with the smallest number of correct answers.
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A5. C) 62 Jack can certainly write down 62 numbers, for example: the

numbers from 1 to 62 (since 62 + 61 < 125). More than 62 numbers will
not be possible. Indeed, the numbers from 25 to 100 can be partitioned
into pairs of sum 125: 25 + 100 = 125, 26 + 99 = 125, and so on up to
62 + 63 = 125. Jack must skip at least one number from each of the 38
pairs. In total, therefore, he can write down no more than 100 − 38 = 62
of the numbers.

A6. B) 1 Using long division to divide a = 11 · · · 11 (2011 digits) by

37, you will quickly notice that 111 is divisible by 37. This is the fact
that we will be using. It implies that the number 1110 · · · 0 is divisible by
37, regardless of the number of trailing zeros. In particular, the following
numbers are divisible by 37: 1110 · · · 0 (2008 zeros), 1110 · · · 0 (2005 zeros),
1110 · · · 0 (2002 zeros), and so on up to 1110 (1 zero). The sum of these
numbers equals 1 . . . 10 (2010 digits 1), which is again divisible by 37. In
conclusion, the remainder of a when divided by 37 is 1, since a − 1 is
divisible by 37.

A7. C) 35 After 140 seconds, Ann has made 7 rounds and Bob only 5.

At that moment, Ann leads by two full rounds. Hence after only 140
4 = 35

seconds, Anne leads by half a round. That is exactly the first moment she
and Bob are at maximal distance from each other.

A8.

M

A

CB

R
D

S

T

B) 132◦ Denote the center of the 15-

gon by M and the intersection of AC and
BD by S (see figure). In quadrilateral
MRST , we see that ∠MRS = 90◦ and
∠STM = 90◦. Furthermore, we see that
∠TMR = 2

15 · 360◦ = 48◦. As the an-
gles of a quadrilateral sum to 360◦, we find:
∠RST = 360◦ − 2 · 90◦ − 48◦ = 132◦. Ob-
serve that ∠RST and ∠BSC are opposite
angles. Hence the sought-after angle also
equals 132◦.
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B-problems

B1. −1 We are given that x = 1
1+x . Clearly, x 6= 0, since 0 6= 1

1 .

Hence, on both sides of the equation, we may flip the numerator and
denominator of the fraction. This results in: 1

x = 1 + x. Combining both
formulas, we obtain x− 1

x = x− (1 + x) = −1.

B2. 20 Consider three escalators in a row: the first one going up,

the second standing still, and the third going down. If Dion walks up
the first escalator, he arrives at the top after exactly 12 steps. Raymond,
walking up the third escalator, takes 60 steps to reach the top and reaches
only 1

5 of the escalator after 12 steps. A third person, say Julian, takes
the second escalator and walks at the same pace as Dion and Raymond.
After 12 steps, he will be positioned exactly in between Dion and Julian,
at ( 5

5 + 1
5 )/2 = 3

5 of the escalator. Therefore, he will need 5
3 · 12 = 20 steps

to reach the top.

B3. 120 Let’s call the eldest scout A. There are 5 possibilities for

finding him a partner B for the first day. Then, there are 4 possible
partners C for B on the second day, because he cannot be paired with A
twice. Now for C, there are 3 possible partners D on the first day, since he
cannot go with B again, and A is already paired. For D, there are now 2
possible partners E on the second day, since B and C are already paired,
and A cannot be his partner because that would leave two scouts that are
forced to form a pair on both days. Finally, there is one scout left. He
has no choice but to team op with E on the first day, and with A on the
second. In total there are 5× 4× 3× 2 = 120 possibilities.

B4.

A B

C

M

O

R

3
8 Consider the inscribed circle. We de-

note its center by O and its radius by r. The points
where the circle is tangent to AB and BC are de-
noted by M and R, respectively.
Since A, O and R are on a line, we have: |AO| =
|AR| − |OR| = 1 − r. We also know that |OM | = r
and |AM | = 1

2 |AB| = 1
2 . Using the Pythagorean

theorem, we find |AM |2+|OM |2 = |AO|2, and hence
1
4 + r2 = (1 − r)2 = r2 − 2r + 1. This implies that
2r = 3

4 and therefore r = 3
8 .
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Second Round, March 2011

Problems

B-problems
The answer to each B-problem is a number.

B1. At a gala, a number of pairs (consisting of one man and one woman) are
dancing, in such a way that 2

3 of the women present is dancing with 3
5 of

the men present.
What part of those present at the gala is dancing?

B2. A square with edges of length 2 is inside of a square
with edges of length 7. The edges of the smaller
square are parallel to the ones of the larger one.
What is the area of the black-coloured part?

B3. In a classroom, there are 23 students who chose to learn a foreign language,
namely German and French. Of those 23 students, 10 are girls, and 11
of those 23 students have chosen French as their foreign language. The
number of girls that have chosen French, plus the number of boys that
have chosen German, is equal to 16.
What is the number of girls that have chosen French?

B4. We have a deck of 10.000 cards, numbered from 1 to 10.000. A step consists
of removing all the cards that has a square on it, and then renumbering
the remaining cards, starting from 1, in a successive way.
What is the number of steps needed to remove all but one card?

B5.

45
o

We put a grey ribbon over a cylindrical white pole,
under an angle of 45 degrees. The ribbon is then
wound tightly around the pole (without creases). In
this way, we get a grey spiral around the pole. Be-
tween the grey spiral, a white spiral runs around the
pole; that is the part of the pole that is not covered
by the ribbon. The radius of the pole is 2 cm.
It turns out that the white and grey spirals have the same widths. What
is the width of the ribbon?

10



C-problems
For the C-problems not only the answer is important; you also have to describe the way you

solved the problem.

C1. Determine all triples (a, b, c) of positive integers with the following prop-
erties:

• we have a < b < c, and a, b and c are three successive odd integers;

• the number a2 + b2 + c2 consists of four equal digits.

C2. Thirty students participate in a mathematical competition with sixteen
questions. They have to answer each question with a number. If a student
answers a question correctly within a minute, he gets 10 points for that
question. If a student answers a question correctly, but not within one
minute, then he gets 5 points for that question. And if a student answers
a question incorrectly, he gets no points at all for that question.
After the competition has ended, it turns out that from all the 480 answers
that were given, more than half was correct and given within a minute.
The number of answers that were correct, but not given within a minute,
turns out to be equal to the number of incorrect answers.
Show that there are two students with the same total score.

Solutions

B-problems

B1. 12
19 Let w be the number of women present, and let m be the

number of men present. The problem tells us that 2
3w = 3

5m and hence
that w = 9

10m. The number of people dancing, is exactly twice the number
of men dancing, namely 6

5m.

The number of people present is of course m + w = m + 9
10m = 19

10m. So
it follows that the part of those present that is dancing, is equal to

6
5m
19
10m

= 6
5 ·

10
19 = 12

19 .
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B2. 10 We split the black part into four tri-

angles, of which we coloured two of them gray. The
two gray triangles both have base 2, and their com-
bined height is 7 − 2 = 5, namely the height of the
larger square minus the height of the smaller square.
Hence the area of the two grey triangles together is
equal to 1

2 · 2 · 5 = 5. The same holds for the two
black triangles. It follows that the combined area is 5 + 5 = 10.

B3. 7 There are 23 students in total. From what’s given, it follows

that:

16 + 11 + 10 = (girls with French + boys with German)

+ everyone with French + all girls

= (girls with French + boys with German)

+ (girls with French + boys with French)

+ (girls with French + girls with German)

= 3× girls with French + boys with German

+ boys with French + girls with German

= 2× girls with French + 23.

So the total number of girls that have chosen French is equal to 16+11+10−23
2 =

14
2 = 7.

B4. 198 On the first step, we remove the cards numbered by 12, 22, 32,

. . . , 1002. Then 9900 cards remain. Since 992 6 9900 < 1002, we remove
12, 22, . . . , 992 in the second step. After that, 9900 − 99 = 9801 = 992

cards are left, which is a square.

In general, if we start with n2 cards, with n > 2, we remove n cards in the
first step, after which n2−n cards remain. Since (n− 1)2 = n2− 2n+ 1 6
n2 − n < n2, we remove n − 1 cards in the second step. Then exactly
(n2 − n) − (n − 1) = (n − 1)2 are left. So in two steps we can reduce the
number of cards from n2 to (n− 1)2. It follows that we need 2 · 99 = 198
steps to remove all but one of the cards when we start with 1002 cards.

12



B5.

45o

B C

DA

π
√

2 cm Imagine the pole as a paper cylin-

der. Cut it open along its length, then un-
roll it, to get a rectangular strip of paper. So
points A and D correspond to the same point
on the cylinder, just like points B and C. The
width of the strip is equal to the perimeter of
the cylinder, so |AD| = |BC| = 2π · 2 cm =
4π cm.

Note that the grey ribbon forms a 45◦ angle
with the cutting line, ABCD is a square. The
length of the diagonal BD is equal to

√
2 ·

4π cm and also equal to four times the width
of the grey ribbon, since the white and grey stripes have the same width.
It follows that the grey ribbon has width π

√
2 cm.

C-problems

C1. Since a, b and c are three successive positive odd integers, we can write:
a = 2n− 1, b = 2n+ 1 and c = 2n+ 3, with n a positive integer.
A calculation then gives:

a2 + b2 + c2 = (2n− 1)2 + (2n+ 1)2 + (2n+ 3)2

= (4n2 − 4n+ 1) + (4n2 + 4n+ 1) + (4n2 + 12n+ 9)

= 12n2 + 12n+ 11.

This needs to be equal to an integer that consists of four digits p. Hence the
integer 12n2 + 12n consists of four digits, of which the first two are equal
to p, and the last two are equal to p−1. Since 12n2 +12n is divisible by 2,
p− 1 has to be even. So we have the following possibilities for 12n2 + 12n;
1100, 3322, 5544, 7766 and 9988. This integer also must be divisible by
3, so the only integer remaining is 5544, so n2 + n = 5544

12 = 462. We
can rewrite this as n2 + n − 462 = 0. Factorizing this quadratic equation
then gives: (n − 21)(n + 22) = 0. Since n is a positive integer, the only
solution is n = 21. So the only triple satisfying the given properties is
(a, b, c) = (41, 43, 45).
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C2. Note that the possible scores are multiples of 5. The lowest score a student
can get is 0, and the highest score is 16 ·10 = 160. Now suppose that there
are no two students with the same score. Then the combined score of the
students is at most 160 + 155 + 150 + · · ·+ 15 = 1

2 · 175 · 30 = 2625. We’ll
derive a contradiction from this.

Let A be the combined number of correct answers that were given within
one minute, B be the combined number of correct answers that were not
given within a minute, and C be the combined number of incorrect answers.
The students answered 16·30 = 480 questions together, so A+B+C = 480.
More than half of the questions was answered correctly within one minute,
so A > 240. Also note that B = C, so B = C = 480−A

2 . We now can
express the combined score in A. This is equal to:

10 ·A+ 5 ·B + 0 · C = 10 ·A+ 5 · 480−A
2

= 15
2 A+ 1200.

Since A > 240, the combined scores of the students is greater than 15
2 ·

240 + 1200 = 3000. But from the assumption that no two students have
the same score, we deduced that the combined score was at most 2625.
This is a contradiction. We deduce that this assumption was wrong, so
that there are two students with the same score.

14



Final Round, September 2011

Problems
For these problems not only the answer is important; you also have to describe the way you

solved the problem.

1. Determine all triples of positive integers (a, b, n) that satisfy the following
equation:

a! + b! = 2n.

Notation: k! = 1×2×· · ·×k, for example: 1! = 1, and 4! = 1×2×3×4 = 24.

2. Let ABC be a triangle. Points P and Q lie on side BC and satisfy |BP | =
|PQ| = |QC| = 1

3 |BC|. Points R and S lie on side CA and satisfy |CR| =
|RS| = |SA| = 1

3 |CA|. Finally, points T and U lie on side AB and satisfy
|AT | = |TU | = |UB| = 1

3 |AB|. Points P,Q,R, S, T and U turn out to lie
on a common circle.
Prove that ABC is an equilateral triangle.

3. In a tournament among six teams, every team plays against each other
team exactly once. When a team wins, it receives 3 points and the losing
team receives 0 points. If the game is a draw, the two teams receive 1
point each.
Can the final scores of the six teams be six consecutive numbers a, a +
1, . . . , a+ 5? If so, determine all values of a for which this is possible.

4. Determine all pairs of positive real numbers (a, b) with a > b that satisfy
the following equations:

a
√
a+ b

√
b = 134 and a

√
b+ b

√
a = 126.

5. The number devil has coloured the integer numbers: every integer is
coloured either black or white. The number 1 is coloured white. For
every two white numbers a and b (a and b are allowed to be equal) the
numbers a− b and a+ b have different colours.
Prove that 2011 is coloured white.
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Solutions

1. Since a and b play the same role in the equation a! + b! = 2n, we will
assume for simplicity that a 6 b. The solutions for which a > b are found
by interchanging a and b. We will consider the possible values of a.

Case a > 3: Since 3 6 a 6 b, both a! and b! are divisible by 3. Hence
a! + b! is divisible by 3 as well. Because 2n is not divisible by 3 for
any value of n, we find no solutions in this case.

Case a = 1: The number b must satisfy b! = 2n − 1. This implies that
b! is odd, because 2n is even (recall that n > 1). Since b! is divisible
by 2 for all b > 2, we must have b = 1. We find that 1! = 2n − 1,
which implies that n = 1. The single solution in the case is therefore
(a, b, n) = (1, 1, 1).

Case a = 2: There are no solutions for b > 4. Indeed, since b! would
then be divisible by 4, 2n = b! + 2 would not be divisible by 4,
which implies that 2n = 2. However, this contradicts the fact that
2n = b! + 2 > 24 + 2.

For b = 2, we find 2n = 2+2 = 4. Hence n = 2 and (a, b, n) = (2, 2, 2)
is the only solution.

For b = 3, we find 2n = 2 + 6 = 8. Hence n = 3 and (a, b, n) =
(2, 3, 3) is the only solution. By interchanging a and b, we obtain the
additional solution (a, b, n) = (3, 2, 3).

In all, there are four solutions: (1, 1, 1), (2, 2, 2), (2, 3, 3) and (3, 2, 3). �

2.

A B

C

S

T U

P

QR

K

L

Denote by K the midpoint of PQ. Then K
is also the midpoint of BC, and AK is a me-
dian of triangle ABC. We denote by L the
intersection of AK and ST .

Triangles AST and ACB are similar (sas), be-

cause ∠CAB = ∠SAT and |CA|
|SA| = 3 = |BA|

|TA| .

This implies that ST and CB are parallel lines
(equal corresponding angles).

Triangles ASL and ACK are similar (aa), because ∠SAL = ∠CAK and

∠LSA = ∠TSA = ∠BCA = ∠KCA. Hence |CK|
|SL| = |CA|

|SA| = 3. This

implies that L is the midpoint of ST , because |SL|
|ST | = 3·|SL|

3·|ST | = |CK|
|CB| = 1

2 .

Consider the center M of the circle through P , Q, R, S, T and U . It
is incident to both the perpendicular bisector of PQ, and that of ST .
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However, since PQ and ST are parallel, the two perpendicular bisectors
must coincide: they are the same line. This line is incident to L and K,
and is therefore equal to line AK, which shows that AK ⊥ BC.

It follows that |AC| = |AB|, because AK is the perpendicular bisector of
BC.

In a similar fashion, one can show that |AC| = |BC|, concluding the proof
that triangle ABC is equilateral. �

3. In all, 15 matches are played. In each match, the two teams together earn
2 or 3 points. The sum of the final scores is therefore an integer between
15 · 2 = 30 (all matches end in a draw) and 15 · 3 = 45 (no match is a
draw).

On the other hand, the sum of the six scores equals a+(a+1)+· · ·+(a+5) =
15 + 6a. Hence 30 6 15 + 6a 6 45, which shows that 3 6 a 6 5. We will
prove that a = 4 is the only possibility.

First consider the case a = 5. The sum of the scores equals 15 + 30 = 45,
so no match ends in a draw. Because in every match the teams earn either
0 or 3 points, every team’s score is divisible by 3. Therefore, the scores
cannot be six consecutive numbers.

Next, consider the case a = 3. The scores sum up to 3+4+5+6+7+8 = 33.
The two teams scoring 6 and 7 points must both have won at least one out
of the five matches they played.

The team scoring 8 points must have won at least two matches, because
3 + 1 + 1 + 1 + 1 = 7 < 8. Hence at least 4 matches did not end in a draw,
which implies

A B C D E F
A - 3 1 0 0 0 4
B 0 - 1 0 3 1 5
C 1 1 - 3 0 1 6
D 3 3 0 - 1 0 7
E 3 0 3 1 - 1 8
F 3 1 1 3 1 - 9

that the sum of the scores is at least 4 · 3 +
11 · 2 = 34. But we have already see that
this sum equals 33, a contradiction.

Finally, we will show that a = 4 is possi-
ble. The table depicts a possible outcome
in which teams A to F have scores 4 to
9. The rightmost column shows the total
scores of the six teams. �
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4. For convenience, write y =
√
a and z =

√
b. The equations transform to

y3 + z3 = 134 and y2z + yz2 = 126.

Combining these two equations in a handy way, we find

(y + z)3 = (y3 + z3) + 3(y2z + yz2) = 134 + 3 · 126 = 512 = 83.

This immediately implies that y + z = 8.

Rewrite the first equation as follows: (y + z)yz = y2z + yz2 = 126. Since
y + z = 8, we see that yz = 126

8 = 63
4 .

From y + z = 8 and yz = 63
4 , we can determine y and z by solving a

quadratic equation: y and z are precisely the roots of the equation x2 −
8x+ 63

4 = 0. The two solutions are
8±
√

64−4· 634
2 , that is 9

2 and 7
2 .

Since a > b, also y > z holds. Hence y = 9
2 and z = 7

2 . We therefore find
that (a, b) = (81

4 ,
49
4 ).

Because (a, b) = ( 81
4 ,

49
4 ) satisfies the given equations, as required, we

conclude that this is the (only) solution. �

5. We are give that 1 is white. Hence 0 is black, because otherwise 1 = 1− 0
and 1 = 1+0 would have different colours. The number 2 is white, because
0 = 1− 1 (black) and 2 = 1 + 1 have different colours.

By induction on k, we show that the following claim holds for every k > 0:

3k is black, 3k + 1 and 3k + 2 are white.

We have just shown the base case k = 0. Assume that the claim holds true
for k = `.
Since 1 is white, and 3` + 2 is white by the induction hypothesis, the
numbers (3` + 2) − 1 = 3` + 1 and (3` + 2) + 1 = 3(` + 1) have different
colours. As 3` + 1 is white by the induction hypothesis, 3(` + 1) must be
black.

Since 2 and 3`+ 2 are both white, the numbers (3`+ 2) + 2 = 3(`+ 1) + 1
and (3` + 2) − 2 = 3` must have different colours. As 3` is black by the
induction hypothesis, 3(`+ 1) + 1 must be white.

Since 3(` + 1) + 1 and 1 are both white, the numbers 3(` + 1) + 1 + 1 =
3(` + 1) + 2 and 3(` + 1) have different colours. We already know that
3(`+ 1) is black, so 3(`+ 1) + 2 must be white.

This proves the claim for k = `+ 1.

Because 2011 = 3 · 670 + 1, this shows that 2011 is white. �
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BxMO/EGMO Team Selection Test, March 2012

Problems

1. Do there exist quadratic polynomials P (x) and Q(x) with real coefficients
such that the polynomial P (Q(x)) has precisely the zeros x = 2, x = 3, x =
5 and x = 7?

2. Let4ABC be a triangle and let X be a point in the interior of the triangle.
The second intersection points of the lines XA,XB and XC with the
circumcircle of 4ABC are P,Q and R. Let U be a point on the ray XP
(these are the points on the line XP such that P and U lie on the same
side of X). The line through U parallel to AB intersects BQ in V . The
line through U parallel to AC intersects CR in W .
Prove that Q, R, V , and W lie on a circle.

3. Find all pairs of positive integers (x, y) for which

x3 + y3 = 4(x2y + xy2 − 5).

4. Let ABCD a convex quadrilateral (this means that all interior angles are
smaller than 180◦), such that there exist a point M on line segment AB
and a point N on line segment BC having the property that AN cuts the
quadrilateral in two parts of equal area, and such that the same property
holds for CM .
Prove that MN cuts the diagonal BD in two segments of equal length.

5. Let A be a set of positive integers having the following property: for each
positive integer n exactly one of the three numbers n, 2n and 3n is an
element of A. Furthermore, it is given that 2 ∈ A. Prove that 13824 /∈ A.
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Solutions

1. Suppose that such polynomials exist and write Q(x) = ax2 + bx + c. If
we evaluate Q in 2, 3, 5, and 7, we must get exactly the (at most) two
zeros of P . Since Q(x) attains each value at most two times (because Q is
quadratic) we get two different values exactly two times.
Now suppose that Q(n) = Q(m) for different numbers m and n. Then
an2 + bn + c = am2 + bm + c, hence a(n2 − m2) = b(m − n), hence
a(n+m)(n−m) = −b(n−m). As m− n 6= 0, this yields a(n+m) = −b,
or equivalently, n+m = −b

a .
We know that 2, 3, 5 and 7 split in two pairs (m,n) and (k, l) such that
Q(m) = Q(n) and Q(k) = Q(l). Therefore, it holds that m + n = −b

a =
k + l. We have to split the four numbers 2, 3, 5 and 7 in two pairs having
the same sum. However, this is impossible, since 2 + 3 + 5 + 7 = 17 is odd.
We conclude that there are no polynomials P and Q having the required
properties. �

2. As AB and UV are parallel, it holds that ∆ABC ∼ ∆UV X (AA). Anal-
ogously, it holds that ∆ACX ∼ ∆UWX. These similarities yield that

|XA|
|XB|

=
|XU |
|XV |

and
|XA|
|XC|

=
|XU |
|XW |

.

This yields that

|XB|
|XC|

=
|XB|
|XA|

|XA|
|XC|

=
|XV |
|XU |

|XU |
|XW |

=
|XV |
|XW |

.

The power of a point theorem for the point X and the cyclic quadrilateral
BCQR gives that

|XC| · |XR| = |XB| · |XQ| = |XB|
|XC|

· |XC| · |XQ| = |XV |
|XW |

· |XC| · |XQ|,

hence
|XW | · |XR| = |XV | · |XQ|.

From the given configuration (X in the interior of the triangle, U and P
on the line XP on the same side of X) follows that R and W lie on the
same side of X on the line XC, and also that V and Q lie on the same
side of X on the line XB. Hence, the following equality also holds for the
directed distance: XW ·XR = XV ·XQ. The power of a point theorem
then yields that W,R, V and Q lie on a circle. �
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3. It holds that (x + y)3 = x3 + 3x2y + 3xy2 + y3, hence the given equality
yields

(x+ y)3 = x3 + y3 + 3x2y + 3xy2

= 4(x2y + xy2 − 5) + 3x2y + 3xy2

= 7x2y + 7xy2 − 20

= 7xy(x+ y)− 20.

Now x + y is a divisor of 20, because x + y is a divisor of (x + y)3 and
7xy(x+ y). As x+ y > 2, the possible values for x+ y are 2, 4, 5, 10, 20.
Considering the equality (x+ y)3 − 7xy(x+ y)− 20 modulo 7 yields

(x+ y)3 ≡ −20 ≡ 1 mod 7.

For each of the possible values for x+ y we check whether its third power
is congruent to 1 modulo 7. It holds that 53 ≡ −1 mod 7, hence x+y = 5
is impossible. It holds that 103 ≡ −1 mod 7, hence x + y = 10 is also
impossible. It holds that 203 ≡ −1 mod 7, hence x + y = 20 is also
impossible. We are left with the possibilities x+ y = 2 and x+ y = 4.
If x+ y = 2, then x = y = 1 and then the left hand site is positive and the
right hand side is negative, hence also x+y = 2 is impossible. If x+y = 4,
then (x, y) is equal to (1, 3), (2, 2) or (3, 1). By substituting this into the
equality we find that only (1, 3) and (3, 1) are solutions. �

4. For a polygon P, denote by O(P) the area of P. Let T be the midpoint
of BD. Now triangles CDT and CBT have equal length bases, namely
|DT | = |BT |, and their altitudes have the same length, hence their areas
are equal. In the same way it holds that O(ADT ) = O(ABT ). Hence,
O(ATCD) = 1

2O(ABCD) = O(ANCD). Remark that T cannot lie in the
interior of triangle ACD, because then O(ATCD) < O(ACD) would hold,
while it holds that O(ANCD) > O(ACD). Therefore,

O(ATC) = O(ATCD)−O(ACD) = O(ANCD)−O(ACD) = O(ANC).

Triangles ATC and ANC have the same base AC, hence their altitudes
have equal lengths. This means that the line NT is parallel to the base
AC.
Analogously, we show that MT is parallel to AC. Hence, NT ‖ MT and
this yields that M , N and T lie on a line. Hence, the midpoint of BD lies
on the line MN . �
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5. We will prove the following two assertions:

(i) If m ∈ A and 2 | m, then 6m ∈ A.

(ii) If m ∈ A and 3 | m, then 4
3m ∈ A.

First we prove assertion (i). Suppose that m ∈ A and 2 | m. By choosing
n = m

2 , we find that m
2 and 3

2m do not lie in A. By choosing n = m, we
find that 2m and 3m do niet lie in A. If we now consider n = 3

2m, then
as 2n = 3m and n = 3

2m do not lie in A, hence 3n = 9
2m lies in A. Using

n = 9
2m, we find that 9m /∈ A. Finally, we consider n = 3m: we know that

3m /∈ A and 9m /∈ A, hence 6m ∈ A.
Now we prove assertion (ii). Suppose that m ∈ A and 3 | m. By choosing
n = m

3 , we find that m
3 and 2

3m do not lie in A. By choosing n = m, we
find that 2m does not lie in A. If we now choose n = 2

3m, we know that n
and 3n do not lie in A, hence 2n = 4

3m does lie in A. This proves assertion
(ii).
We know that 2 ∈ A. By repeatedly applying assertions (i) and (ii), we
show that the following numbers all lie in A:

2
(i)→ 22 · 3 (i)→ 23 · 32 (i)→ 24 · 33 (i)→ 25 · 34 (ii)→ 27 · 33 (ii)→ 29 · 32.

As 29 · 32 ∈ A, it holds that 29 · 33 /∈ A. Since 13824 = 29 · 33, this is what
we had to prove. �
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IMO Team Selection Test 1, June 2012

Problems

1. Let I be the incentre of triangle ABC. A line through I intersects the
interior of line segment AB in M and the interior of line segment BC in
N . We assume that BMN is an acute triangle. Let K and L be points on
line segment AC such that ∠BMI = ∠ILA and ∠BNI = ∠IKC.
Prove that |AM |+ |KL|+ |CN | = |AC|.

2. Let a, b, c and d be positive real numbers. Prove that

a− b
b+ c

+
b− c
c+ d

+
c− d
d+ a

+
d− a
a+ b

> 0.

3. Determine all positive integers that cannot be written as a
b + a+1

b+1 where a
and b are positive integers.

4. Let n be a positive integer divisible by 4. We consider the permutations
(a1, a2, . . . , an) of (1, 2, . . . , n) having the following property: for each j we

have ai + j = n+ 1 where i = aj . Prove that there are exactly
( 1
2n)!

( 1
4n)!

such

permutations.

5. Let Γ be the circumcircle of the acute triangle ABC. The angle bisector
of angle ABC intersects AC in the point B1 and the short arc AC of Γ in
the point P . The line through B1 perpendicular to BC intersects the short
arc BC of Γ in K. The line through B perpendicular to AK intersects AC
in L.
Prove that K, L and P lie on a line.
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Solutions

1. Let D, E and F be the orthogonal projections of I on respectively BC,
CA and AB. It holds that N lies between C and D: since if N would
lie between D and B, then ∠BNI would be greater than ∠BDI = 90◦,
but it is given that 4BMN is acute. Hence, N lies between C and D.
Analogously, M lies between A and F . Furthermore, L cannot lie between
A and E, because in that case, ∠ILA > 90◦ would hold, while we have
∠ILA < ∠BMI < 90◦. Hence, L lies between E and C. Analogously, K
lies between A and E. Altogether, E lies between K and L.
It holds that

|AC| = |AE|+ |CE| = |AF |+ |CD| = |AM |+ |MF |+ |CN |+ |ND|,

where the second equality holds because the segments on the tangent lines
to the incircle have equal lengths.
Furthermore, we have ∠IKE = ∠IKC = ∠BNI = ∠DNI and ∠KEI =
90◦ = ∠IDN , hence 4IKE ∼ 4IND (AA). Since line segments EI and
DI both are radii of the incircle, they have equal lengths, hence we even
have 4IKE ∼= 4IND. This yields that |EK| = |ND|.
Analogously, we find that |EL| = |MF |. Altogether, we have

|AC| = |AM |+ |MF |+ |ND|+ |CN |
= |AM |+ |EL|+ |EK|+ |CN | = |AM |+ |KL|+ |CN |. �

2. It holds that
a− b
b+ c

=
a− b+ b+ c

b+ c
− 1 =

a+ c

b+ c
− 1.

By applying the equality also to the other three fractions and adding 4 to
both sides, we find that it is sufficient to prove that:

LHS :=
a+ c

b+ c
+
b+ d

c+ d
+
c+ a

d+ a
+
d+ b

a+ b
> 4. (1)

Next, we apply the inequality of the harmonic and geometric mean to the
two positive numbers b+ c and d+ a:

2
1

b+c + 1
d+a

6
(b+ c) + (d+ a)

2
,

hence,
1

b+ c
+

1

d+ a
>

4

a+ b+ c+ d
.
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Analogously, it holds that

1

c+ d
+

1

a+ b
>

4

a+ b+ c+ d
.

Using this, we find the following inequality for the left-hand side of (1):

LHS = (a+ c)

(
1

b+ c
+

1

d+ a

)
+ (b+ d)

(
1

c+ d
+

1

a+ b

)
> (a+ c) · 4

a+ b+ c+ d
+ (b+ d) · 4

a+ b+ c+ d

= 4 · (a+ c) + (b+ d)

a+ b+ c+ d

= 4.

This proves (1). �

3. It holds that
a

b
+
a+ 1

b+ 1
=

2ab+ a+ b

b(b+ 1)
.

Next, suppose that this is equal to an integer n. Then we have b | 2ab+a+b
and b + 1 | 2ab + a + b. The former yields that b | a and hence b | a − b.
The latter yields b+ 1 | (2ab+ a+ b)− (b+ 1) · 2a = −a+ b and hence also
b + 1 | a − b. Since the gcd of b and b + 1 is equal to 1, we may conclude
that b(b+ 1) | a− b. Hence, we can write a as a = b(b+ 1) · k + b. Since a
is positive, k must be a non-negative integer. Substitution yields

n =
2ab+ a+ b

b(b+ 1)

=
2 ·

(
b(b+ 1) · k + b

)
· b+

(
b(b+ 1) · k + b

)
+ b

b(b+ 1)

=
b(b+ 1) · (2kb+ k) + 2b2 + 2b

b(b+ 1)

= (2b+ 1)k + 2.

Hence, n is of the form n = (2b+ 1)k+ 2. This yields that n > 2 (because
k > 0) and that n−2 is divisible by an odd integer greater than 1 (namely
2b+ 1 > 3).
For the converse, suppose that for a number n we have that n > 2 and that
n− 2 is divisible by an odd integer greater than 1, say 2b+ 1 where b > 1
is an integer. Then there is a k > 0 for which we have n = (2b+ 1)k + 2.
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Now choose a = b(b + 1) · k + b, then a is a positive integer and it holds
that

a

b
+
a+ 1

b+ 1
=

(
(b+ 1)k + 1

)
+
(
bk + 1

)
= (2b+ 1)k + 2 = n.

We conclude that the numbers that can be written as a
b + a+1

b+1 , where a
and b are positive integers, are exactly the numbers n > 2 for which n− 2
is divisible by an odd integer greater than 1. Hence, the numbers that
cannot be written like this, are exactly 1 and the numbers n > 2 for which
n− 2 has no odd divisor greater than 1, otherwise stated for which n− 2
is a power of two, say 2m where m > 0.
We conclude that the numbers that cannot be written as a

b + a+1
b+1 , are

exactly 1 and the numbers of the form 2m + 2 for m > 0. �

4. Let t ∈ {1, 2, . . . , n}. Suppose that at = t, then we may choose i = j = t
to find that at + t = n+ 1, hence 2t = n+ 1. However, n is divisible by 4,
hence n+1 is odd. This is a contradiction. Now suppose that at = n+1−t.
Then we may choose i = n+1− t and j = t to find that an+1−t + t = n+1,
hence an+1−t = n+ 1− t. We have just seen that this cannot occur.
Now suppose that at = u where u 6= t, u 6= n+ 1− t. Then we may choose
i = u and j = t to find that au + t = n + 1, hence au = n + 1 − t. Next,
we may choose i = n + 1 − t and j = u to find that an+1−t = n + 1 − u.
Next, we may choose i = n + 1 − u and j = n + 1 − t to find that
an+1−u = n+ 1− (n+ 1− y) = y. Altogether, we have found that:

at = u,

au = n+ 1− t,
an+1−t = n+ 1− u,
an+1−u = t.

Since u 6= t and u 6= n+ 1− t, the four numbers on the right hand side are
pairwise distinct. Furthermore, we can divide the four numbers into two
pairs of the form (v, n + 1 − v). We have found four numbers for which
it holds that on the same positions in the permutation are the same four
numbers, but in a different order. Now we may choose a t′ not equal to
one of the four mentioned numbers and a u′ with at′ = u′ and in the same
way we find a quadruple containing t′. Note that n+ 1− t′ and n+ 1− u′
cannot be a number of the first quadruple, since then also u′ and t′ would
be a number of the first quadruple. We can continue this way until all n
numbers have been divided into quadruples.
We can generate all permutations by using the following procedure:
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• Choose the smallest number k for which ak is not yet determined.
Choose ak = u for a certain u for which au is not yet determined and
for which u 6= k, u 6= n + 1 − k. This also determines the values of
au, an+1−u and an+1−k.

• Repeat the last step until all values of ak are determined.

For the first k we have n − 2 possible choices of u. During the next step
we have n− 6 possible choices left. One step later, we have n− 10, and so
on. Hence, the total number of permutations having the property, is equal
to

2 · 6 · 10 · . . . · (n− 10) · (n− 6) · (n− 2).

Write n = 4m, then we can write this as

2m · 1 · 3 · 5 · . . . ·(2m− 5) · (2m− 3) · (2m− 1) = 2m · (2m)!

2 · 4 · . . . · (2m)

=
(2m)!

1 · 2 · 3 · . . . ·m
=

(2m)!

m!
=

( 1
2n)!

( 1
4n)!

. �

5. The fact that the angle bisector of angle ABC intersects the short arc AC
in P , implies that P lies exactly on the middle of this arc AC. We have
to prove that KL also goes through P , hence that KL intersects the arc
AC in the middle. Because K lies on Γ, this means that we have to prove
that KL is the angle bisector of ∠AKC.
Let S be the intersection point ofB1K andBC and let T be the intersection
point of BL and AK. Then we have ∠BSK = 90◦ and ∠BTK = 90◦,
hence BTSK is a cyclic quadrilateral. This yields that

∠CBL = ∠SBT = ∠SKT = ∠B1KA. (2)

Because ABKC is a cyclic quadrilateral, we have ∠B1AK = ∠CAK =
∠CBK. By the exterior angle theorem, we have ∠LB1K = ∠B1AK +
∠B1KA, hence because of (2) we get

∠LB1K = ∠B1AK + ∠B1KA = ∠CBK + ∠CBL = ∠LBK.

This yields that LKBB1 is a cyclic quadrilateral, which means that ∠LBB1 =
∠LKB1. If we add (2) to this, we get

∠CBB1 = ∠CBL+ ∠LBB1 = ∠B1KA+ ∠LKB1 = ∠LKA.

Hence,
∠LKA = ∠CBB1 = 1

2∠CBA = 1
2∠CKA,

where we used that ABKC is a cyclic quadrilateral. This yields that KL
is the angle bisector of ∠AKC, as desired. �
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IMO Team Selection Test 2, June 2012

Problems

1. For all positive integers a and b, we define a	 b =
a− b

gcd(a, b)
.

Show that for every integer n > 1, the following holds: n is a prime power
if and only if for all positive integers m such that m < n, it holds that
gcd(n, n	m) = 1.

2. There are two boxes containing balls. One of them contains m balls, and
the other contains n balls, where m,n > 0. Two actions are permitted:

(i) Remove an equal number of balls from both boxes.

(ii) Increase the number of balls in one of the boxes by a factor k.

Is it possible to remove all of the balls from both boxes with just these two
actions,

1. if k = 2?

2. if k = 3?

3. Determine all pairs (x, y) of positive integers satisfying

x+ y + 1 | 2xy and x+ y − 1 | x2 + y2 − 1.

4. Let 4ABC be a triangle. The angle bisector of ∠CAB intersects BC at
L. On the interior of line segments AC and AB, two points, M and N ,
respectively, are chosen in such a way that the lines AL, BM and CN are
concurrent, and such that ∠AMN = ∠ALB. Prove that ∠NML = 90◦.

5. Find all functions f : R→ R satisfying

f
(
x+ xy + f(y)

)
=

(
f(x) + 1

2

)(
f(y) + 1

2

)
for all x, y ∈ R.
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Solutions

1. First suppose that n = pk with p prime and k > 0. Then we need to show
that for all positive integers m with m < n, we have gcd(n, n 	m) = 1.
So let m be a positive integer such that m < n. Write m = pls with p - s
and 0 6 l < k. Then gcd(n,m) = gcd(pk, pls) = pl, so

n	m =
pk − pls

pl
= pk−l − s.

Since k−l > 1, we have gcd(pk−l−s, p) = gcd(−s, p) = 1, hence gcd(n, n	
m) = gcd(pk, pk−l − s) = 1.

Now suppose that n is not a prime power. Then we need to show that there
exists some positive integer m with m < n such that gcd(n, n	m) 6= 1. Let
q be the smallest prime dividing n, and let t be the unique positive integer
such that qt | n and qt+1 - n. As n is not a power of q, there exists a prime p
with p > q dividing n. Hence n

qt > p > q, from which follows that n > qt+1.

Now let m = n− qt+1. Then we have gcd(n,m) = gcd(n, qt+1) = qt, so

n	m =
n− (n− qt+1)

qt
=
qt+1

qt
= q.

As q | n, it follows that gcd(n, n	m) = q > 1. �

2. First suppose that k = 2. Then we can remove all of the balls from both
boxes as follows.

If m = n, we remove m balls from both boxes, and we are done. If m 6= n,
we may assume without loss of generality that m < n. If furthermore,
2m < n holds, then we double the number of balls in the first box, until
there are m′ balls in the first box, where m′ satisfies both m′ < n and
2m′ > n. Hence we may assume without loss of generality that 2m > n.
Now remove 2n−m > 0 balls from both boxes. In the first box, m−(2m−
n) = n−m > 0 balls remain; in the second box, n−(2m−n) = 2(n−m) > 0
balls remain. Doubling the number of balls in the first box, then removing
2(n−m) balls from both boxes now makes both boxes empty.

Now consider the case k = 3. Let S denote the number of balls in the
first box, minus the number of balls in the second one. The first action
does not change S. Applying the second action to some box with t balls,
does not change the parity of S either, since we have 3t ≡ t (mod 2).
Hence the parity of S does not change. We conclude that the parity of
S is an invariant under both actions. Now suppose that we start with
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(m,n) = (1, 2), then S = −1 ≡ 1 (mod 2). Then it is impossible to reach
the situation in which both boxes are empty, since then one would have
S ≡ 0 (mod 2). Hence we cannot empty both boxes if k = 3. �

3. Note that

(x2+y2−1)−(x+y+1)(x+y−1) = (x2+y2−1)−(x2+y2+2xy−1) = −2xy.

As x+ y+ 1 divides x2 + y2 − 1 and (x+ y+ 1)(x+ y− 1), it follows that
x+ y− 1 divides 2xy. It was given that x+ y+ 1 divides 2xy as well. But
the difference of x + y − 1 and x + y + 1 is 2, so their greatest common
divisor is either 1 or 2. So either 2xy is divisible by (x+ y + 1)(x+ y − 1)
(if the gcd is 1), or 2xy is divisible by 1

2 (x+ y+ 1)(x+ y− 1) (if the gcd is
2). In both cases, we have (x+ y − 1)(x+ y + 1) | 4xy, so for some k > 1,
we have

4xy = k(x+ y − 1)(x+ y + 1) = k(x2 + y2 + 2xy − 1) > k(4xy − 1).

Note that the last inequality holds, as for all real numbers x and y, we
have x2 + y2 > 2xy.

If k > 2, then 4xy > 2·(4xy−1), so 4xy 6 2. This contradicts x and y being
positive integers. Hence k = 1, so we deduce that 4xy = x2 + y2 + 2xy−1.
This implies that x2 + y2 − 1 − 2xy = 0, or equivalently, (x − y)2 = 1.
Hence either x = y − 1, or x = y + 1.

Hence the only pairs that can satisfy the conditions are (x, x + 1) with
x > 1, and (x, x − 1) with x > 2. We check that they indeed satisfy the
conditions. Indeed, for the first family of pairs, we note that 2x+2 divides
2x(x+ 1), and that 2x divides x2 + (x+ 1)2 − 1 = 2x2 + 2x, and similarly
for the second family of pairs. We conclude that the solutions are precisely
the pairs (x, x+ 1) with x > 1 and the pairs (x, x− 1) with x > 2. �

4. Let T be the intersection of MN and BC. As ∠ACB = ∠ALB−∠LAC =
∠AMN−∠LAC < ∠AMN , it follows that T and B lie on the same side of
C, and that T and N lie on the same side of N . Since ∠AMT = ∠AMN =
∠ALB = ∠ALT , we note that AMLT is a cyclic quadrilateral. Hence
∠NML = ∠TML = ∠TAL. So it suffices to show that ∠TAL = 90◦. This
is the case if and only if AT is the external angle bisector of ∠CAB, because
the internal and external angle bisectors of any angle are perpendicular.

As AL, BM and CN are concurrent, Ceva’s Theorem gives

BL

LC
· CM
MA

· AN
NB

= 1.
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As M , N and T are collinear, Menelaus’ Theorem gives

BT

TC
· CM
MA

· AN
NB

= −1.

From these two identities, it follows that

BL

LC
= −BT

TC
.

By the angle bisector theorem, we have |BL|
|LC| = |BA|

|CA| , hence |BT |
|TC| = |BA|

|CA| .

So, again by the angle bisector theorem, it follows that AT is the external
angle bisector of ∠CAB, as desired. �

5. Substituting y = −1 gives

f
(
f(−1)

)
=

(
f(x) + 1

2

)(
f(−1) + 1

2

)
.

If f(−1) 6= − 1
2 , then we can divide this equation by f(−1)+ 1

2 , which gives

f(x) + 1
2 =

f
(
f(−1)

)
f(−1) + 1

2

,

so f is constant. Then there is some c ∈ R such that f(x) = c for all
x ∈ R. Substituting this in the functional equation, gives

c =
(
c+ 1

2

)(
c+ 1

2

)
,

or equivalently, 0 = c2 + 1
4 , but this equation has no real solutions. We

deduce that f cannot be constant.

Hence it follows that f(−1) = − 1
2 . This also implies that f

(
f(−1)

)
= 0,

so f(− 1
2 ) = 0. Substituting x = 0 and y = − 1

2 then gives

f
(
f(− 1

2 )
)

=
(
f(0) + 1

2

)(
f(− 1

2 ) + 1
2

)
,

hence
f(0) =

(
f(0) + 1

2

)
· 12 ,

so f(0) = 1
2 .

Now suppose that there exists some a 6= −1 such that f(a) = − 1
2 . Substi-

tuting y = a now gives

f
(
x(1 + a)− 1

2

)
= 0.
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As 1 + a 6= 0, the function mapping x to x(1 + a) − 1
2 attains all values

in R. Hence f must be identically zero, hence constant, contradicting our
earlier findings. So the unique x ∈ R such that f(x) = − 1

2 is x = −1.

Now let b be such that f(b) = 0. Substitute x = b− 1
2 , and y = 0:

f
(
b− 1

2 + 1
2

)
=

(
f
(
b− 1

2

)
+ 1

2

)(
1
2 + 1

2

)
,

or equivalently,
f(b) =

(
f
(
b− 1

2

)
+ 1

2

)
.

Since f(b) = 0, we have f(b − 1
2 ) = − 1

2 . Hence it follows by an earlier
result that b − 1

2 = −1, hence b = − 1
2 . Hence the unique x ∈ R with

f(x) = 0 is x = − 1
2 .

Now substitute x = −1. This gives

f
(
−1− y + f(y)

)
= 0.

From this it follows that −1− y + f(y) = − 1
2 , so f(y) = y + 1

2 . Hence if a
function f satisfies the functional equation, it must be the function given
by f(x) = x+ 1

2 .

We check that this function indeed satisfies the functional equation. In-
deed, the left hand side becomes x+xy+ y+ 1, which is equal to the right
hand side (x + 1)(y + 1). Hence the function f given by f(x) = x + 1

2 is
the unique function satisfying the functional equation. �
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Junior Mathematical Olympiad, October 2011

Problems

Part 1

1. A chord of a circle is a line segment whose endpoints
lie on the circle.

What is the maximal number of intersections that
six chords of a circle can have?

A) 10 B) 12 C) 13 D) 14 E) 15

2.

voor na

There are five buttons on the vertices of the
Pentagon. Each of these are either black or
white. Pressing one of these buttons will cause
this button, together with the buttons on the
edge opposite to it, to change colours; from
black to white, and vice versa.

Suppose that all of the buttons are white. What is the minimal number of
button presses needed to turn all of the buttons black?

A) 3 B) 4 C) 5 D) 7 E) 10

3. Let a, b, c, d, e, f , g, h be a sequence of numbers with the property that
any three consecutive numbers sum to 30 (e.g. b + c + d = 30). Suppose
that c = 5.

What is a+ h?

A) 10 B) 14 C) 15 D) 20 E) 25

4. In a cube with edges of length 3 cm, some holes are made. In the center of
each face, a square hole with sides of length 2 cm is made, such that the
sides of this square are parallel to the edges of the cube. This hole runs
through the entire cube.

What is (in cm3) the volume of the object that remains after making these
three holes?

A) 6 B) 7 C) 8 D) 9 E) 10
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5. In a classroom, one or more pupils always speak the truth. The other
pupils sometimes do speak the truth, and sometimes do not. The pupils
were asked how many of them always speak the truth. The answers were:
5, 6, 2, 3, 4, 6, 3, 6, 3, 4, 6, 5, 4, 3, and 6.

How many pupils do always speak the truth?

A) 2 B) 3 C) 4 D) 5 E) 6

6. Keith owns a machine in which he can put two numbers, A and B. He
can choose A and B to be any of the numbers 0, 1, 2, . . . , 1000 (A and
B are allowed to be equal). The machine will then return the number
100×A + 3×B. Keith tries to get the machine to return as many of the
numbers from 1 up to 1000 as possible. However, for some numbers, it is
impossible for the machine to return it, no matter what numbers Keith
puts into the machine.

How many such numbers from 1 up to 1000 are there?

A) 66 B) 67 C) 99 D) 100 E) 363

7. A square with sides of length 1 is divided into two
pieces by a line segment of length 1, parallel to a
diagonal.

What is the area of the smallest piece?

A) 1
4 B) 2

7 C) 5
16 D) 1

3 E) 3
8

8. ∗ ∗ ∗
∗ ∗ ∗ +

4 ? 9

In the addition to the right, the question mark and
the asterisks all represent a digit. Every digit from
1 up to 9 occurs exactly once.

What is the digit represented by the question mark?

A) 2 B) 3 C) 5 D) 7 E) 8

9. Adrian puts stones in the nine squares of a 3×3-board. Into each of the
squares, he is allowed to put any number of stones. He is also allowed to
leave squares empty. When Adrian is finished, he counts the numbers of
stones lying in each of the columns and rows. He wants these six numbers
to be pairwise distinct.

At least how many stones does Adrian need to achieve this?

A) 7 B) 8 C) 9 D) 10 E) 11
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10. Peter received 100 euro for his birthday. He uses all of it to buy exactly
100 objects. What he buys, consists of liquorice wheels of 10 cents a piece,
bouncing balls of 2 euro a piece, and decks of playing cards of 5 euro a
piece.

How many decks of playing cards does Peter buy?

A) 10 B) 11 C) 15 D) 16 E) 19

11. How many integers have the following properties; the digits are pairwise
distinct, they are non-zero, and the sum of the digits is 10?

A) 32 B) 48 C) 56 D) 511 E) 512

12. Eight children together enumerate all of the numbers from 1 up to 2011,
in the following manner.

• Angie enumerates all of the numbers from 1 up to 2011 in groups
of three, skipping the middle number of each triple. So she says:
“1, 3, 4, 6, 7, 9, . . . , 2005, 2007, 2008, 2010, 2011”.

• Ben enumerates all of the numbers Angie skipped, in groups of three,
skipping the middle number of each triple.

• Catherine enumerates all of the numbers that were skipped by both
Angie and Ben, again in groups of three, and skipping the middle
number of each triple.

• Dorothy, Eve, Francis, and Gerald continue in the same way.

• In the end, Henry enumerates the only remaining number.

Which number is enumerated by Henry?

A) 712 B) 1094 C) 1123 D) 1265 E) 1387

13. 2

?

9

In this magic square, the three rows, the three columns,
and the two diagonals all have the same sum.

Which number is represented by the question mark?

A) 5 B) 6 C) 7 D) 10 E) 16
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14. Ten ants walk upwards on a long and thin blade of grass. When an ant
reaches the tip, it turns around. The ants cannot pass each other, so when
they ‘collide’, they both turn around as well. In the end, all ten ants reach
the bottom of the blade of grass safely.

What is the total number of times that an ant turned around?

A) 45 B) 50 C) 90 D) 95 E) 100

15. 17 16 15 14 13
18 5 4 3 12
19 6 1 2 11
20 7 8 9 10
21 22 ... ... ...

On a large sheet of squared paper, the natural num-
bers 1, 2, 3, 4, . . . are written along a spiral, as shown
in the figure. Somewhere on this sheet, the number
1000 is written with its eight neighbours around it.

Among these eight neighbouring numbers, which one
is the smallest?

A) 873 B) 874 C) 875 D) 876 E) 877

Part 2
The answer to each problem is a number.

1. Use the digits 4, 5, 6, and 7 to make two numbers (every digit may only be
used once in total), such that the first number is a multiple of the second
one.

What is the largest possible ratio between these two numbers?

2. The three sides of a triangle have three consecutive integers as length.
The length of the shortest side is 30% of that of the circumference of the
triangle.

What is the length of the longest side?

3. A group of 10 boys and 9 girls goes to watch a movie. They all buy a ticket
for 6 euro. Fourteen of these 19 children buy a bag of popcorn. After the
movie finished, it turns out that the combined amount of money that the
boys spent (on the tickets and bags of popcorn), is equal to the combined
amount of money that the girls spent.

Determine all of the possible prices of a bag of popcorn.
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4. Quintijn writes down four pairwise distinct numbers that sum up to 44.
Of every pair of numbers, he calculates their difference. These are: 1, 3,
4, 5, 6 and 9.

What possibilities are there for the value of the largest number of the four
numbers that were written down? Write down all possibilities.

5. Julian has a big jar of liquorice wheels. Every day, he eats exactly a quarter
of the liquorice wheels that are in the jar at the beginning of the day. At
the end of the third day, less than 100 liquorice wheels remain in the jar.

At most how many liquorice wheels were in the jar at the beginning of the
first day?

6. The number 1782379 has seven digits. Subtract this number from 9999999,
and you get another seven digit number. Put this number at the end of
1782379, giving a fourteen digit number. Divide this number by 9999999.

What is the result?

7. At the beginning of class, all boys are present, but only two girls are
present. After a while, three more girls enter class. This doubles the
percentage of girls in class.

How many boys are in class?

8. We denote by max(a, b) the largest of the numbers a and b. E.g. max(4,−7) =
4.

What is the smallest possible value of max
(
5−max(a, 3), a+ 3

)
?

9. Divide a 3-by-5 rectangle with one straight cut in
such a way, that a rhombus can be formed with the
two pieces. A rhombus is a quadrilateral with four
sides of equal length.

What is the length of the cut?

10. Given a three digit number, we do the following. We multiply all of its
digits, and subtract the three digits one by one from the result.

Find the smallest three digit number such that this procedure gives the
number 221.
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Solutions

Part 1

1. E) 15 6. C) 99 11. C) 56

2. C) 5 7. A) 1
4 12. B) 1094

3. E) 25 8. C) 5 13. E) 16

4. B) 7 9. B) 8 14. E) 100

5. B) 3 10. B) 11 15. D) 876

Part 2

1. 189 6. 1782380

2. 11 7. 10

3. 1.50 and 3 euro 8. 2

4. 15 and 16 9. 5

5. 192 10. 568
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