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Introduction

The Dutch Mathematical Olympiad consists of two rounds. The first round is held on the
participating schools and consists of eight multiple choice questions and four open questions
(see page 1–4). Students get two hours to work on the paper. On January 26, 2007, in total
2742 students of 185 secondary schools participated in this first round.

Those students that scored 20 points or more on the first round (out of a maximum of
36 points) were invited to the second round, which took place at University of Technology
Eindhoven after the summer holidays. Also some outstanding participants in the Kangaroo
math contest or the Pythagoras Olympiad were invited.

In total 132 students were invited, of which 119 participated in the second round on September
14th, 2007. The second or final round contains five problems for which the students have to
give extensive solutions and proofs. They have three hours for the paper (see page 5–7).
After the prices had been awarded in the beginning of November, the Dutch Mathematical
Olympiad concluded its 46th edition 2007. In 2011 we will have our 50th edition.

The 24 most outstanding candidates of the Dutch Mathematical Olympiad 2007 were invited
to an intensive seven-month training programme, consisting of weekly problem sets. Also, the
students met twice for a three-day training camp, three times for a day at the university, and
finally for a six-day training camp in the beginning of June. At this time, only 14 candidates
were left. Out of those, the team was selected by a final selection test on June 7, 2008 (see
page 8–12). The team will have a training camp in Spain from July 7 until July 14, together
with the team from New Zealand.

In the meantime, a new edition of the Dutch Mathematical Olympiad has started at the
participating schools on January 25, 2008 (see page 13–16). We are happy to see that the
number of participating schools as well as the number of participants has increased to 201
respectively 3004. As a new initiative, we have made some training material and we have
organized training sessions at six universities in the country for the 144 students who have
been invited for the second round in September 2008.
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The Dutch team for IMO 2008 Madrid consists of

• Raymond van Bommel (16 y.o., participated in IMO 2007 as well)

• Remy van Dobben de Bruyn (17 y.o.)

• Floris van Doorn (17 y.o., observer C in IMO 2007)

• Alexander van Hoorn (18 y.o.)

• Milan Lopuhaä (18 y.o., participated to in IMO 2007 as well)

• Maarten Roelofsma (17 y.o.)

The Dutch delegation for IMO 2008 Madrid further consists of

• dr. Quintijn Puite, team leader
University of Technology Eindhoven

• Birgit van Dalen MSc, deputy team leader
Leiden University

• drs. Wim Berkelmans, project manager IMO 2011, observer A
VU University Amsterdam

• prof.dr. Gerhard Wöginger, observer A
University of Technology Eindhoven

• Teunis van Wijngaarden, observer C
CWI Amsterdam

We are grateful to Jinbi Jin for the translation into English of both the problems and the solutions.

ii



OLYMPIADE

W
ISKUNDE

N
E

D
E

R
LA

N
D

S
E

Dutch Mathematical Olympiad
Round 1

Friday, January 26, 2007
Available time: 2 hoursPlease read the following before you start:

• The A-problems are multiple choice questions. Only one of the five given options is correct. Please state
clearly behind which letter the correct solution is stated. You get 2 points for each correct answer.

• The B-problems are open questions, which have a number as answer. You get 5 points for each correct
answer. Please work accurately, since an error in your calculations can cause your solution to be considered
wrong. Please give exact answers, for example 11

81
or 2 +

√
3 or π + 1.

• This is a competition, not an exam. So it is to be expected that only few people will get all the answers
right, and you don’t need to worry if you have only solved a part of the problems.

• The use of formula sheets, calculators and similar tools is not allowed.

• The point is that you have fun solving unusual mathematical problems. Good luck!

A-problems

A1. The number M has 2007 digits, each of which is equal to 1, M = 111 . . . 111. What is the
sum of the digits of 2007×M?

A) 2007 B) 18036 C) 18063 D) 18084 E) 4028049

A2. The next five sequences all contain the same numbers. Which sequence is ordered correctly?

A) 0.16 < 1
7 < 13

97 < 17
101 < 5

33

B) 17
101 < 0.16 < 1

7 < 5
33 < 13

97

C) 1
7 < 0.16 < 5

33 < 17
101 < 13

97

D) 5
33 < 1

7 < 13
97 < 17

101 < 0.16

E) 13
97 < 1

7 < 5
33 < 0.16 < 17

101

A3. In the figure, nine grid points are drawn. In how many ways can we
draw a triangle, the vertices of which lie on three of these nine grid
points?

A) 76 B) 84 C) 92 D) 496 E) 504

A4. How many pairs of positive integers (a, b) with a + b < 100 satisfy the equation a + 1
b =

13× (b + 1
a)?

A) 5 B) 7 C) 9 D) 13 E) 28

A5. We use five different paths to connect five grid points.
Which of these paths is the shortest one?

A) B) C) D) E)

1



A6. We construct a sequence of numbers as following:
The first number is equal to 2, and so is the second number. Every following number
is the product of the two previous ones. So the first few numbers of the sequence are:
2, 2, 4, 8, 32, . . .
What is the final digit of the 2007th number in this sequence?

A) 0 B) 2 C) 4 D) 6 E) 8

A7. Does the equation 9n + 9n + 9n = 32007 have any integral solutions? If so, which of the
following is a solution?

A) 667 B) 669 C) 1003 D) 2006 E) No solutions exist

A8. Behind a long table, nine chairs are arranged in a row, on which six students and three
teachers are going to sit. The three teachers arrive first and they decide to pick their chairs in
such a way that every teacher sits between two students. In how many ways can the teachers
pick their chairs, given this constraint?

A) 12 B) 36 C) 60 D) 84 E) 630

B-problems

B1. Mark one card with a ‘1’, two cards with a ‘2’, . . ., fifty cards with a ‘50’. Put these 1 + 2 +
· · ·+50 = 1275 cards into a box and shuffle them. How many cards do you need to take from
the box to be certain that you will have taken at least 10 cards with the same mark?

B2. We have a quadrilateral ABCD with side lengths |AB| = 16, |BC| =
21, |CD| = 2 and |DA| = 28. The sides AB and CD are parallel. Two
lines, both parallel to AB and CD, divide ABCD into three similar
quadrilaterals.
Calculate the perimeter of the smallest of these quadrilaterals.

A B

CD

B3. For every pair of integers a, b, we define an operator a⊗ b with the following three properties.

1. a⊗ a = a + 2;

2. a⊗ b = b⊗ a;

3. a⊗(a+b)
a⊗b = a+b

b .

Calculate 8⊗ 5.

B4. A flag with the shape of an equilateral triangle is hung up on the tops
of two vertical poles by two of its vertices. One of these poles has
length 4, while the other has length 3. Also, the third vertex of the
flag touches the ground. Calculate the length of the flag’s side.

2



OLYMPIADE

W
ISKUNDE

N
E

D
E

R
LA

N
D

S
E

Solutions
of the problems of Round 1 of the

Dutch Mathematical Olympiad 2007

A-problems

A1. C) 18063 If M had 4 ones, then 2007 ×M = 2229777, and the sum of the digits equals
3× (2 + 7) + 9 = 4× 9.
If M had 5 ones, then 2007×M = 22299777, and the sum of the digits equals 3×(2+7)+2×9 =
5× 9.
Continuing like this, we see that if M has 2007 ones, then the sum of the digits equals
2007× 9 = 18063.

A2. E) We don’t need to give all the fractions the same denominator; we can choose
the denominators in such a way that they are near 100. So 0, 16 = 16

100 , 1
7 = 14

98 , 5
33 = 15

99 .
Since, for k < n, k

n < k+1
n+1 , (because of k+1

n+1 −
k
n = n−k

n(n+1) > 0,) we now can see that
13
97 < 14

98 < 15
99 < 16

100 < 17
101 .

A3. A) 76 There are 9×8×7
3×2×1 = 84 ways to pick three points from the nine grid points. But

if those three points lie on a single line, then those three points do not form a triangle. This
occurs eight times; three times horizontally, three times vertically, and two times diagonally.
So there are 84 − 8 = 76 ways to pick three points from the grid points such that they do
form a triangle.

A4. B) 7 First we rewrite the equation as ab+1
b = 13 × ( ba+1

a ). So a = 13b, and we see
that the only pairs satisfying the conditions are the seven pairs (13, 1), (26, 2), . . . , (91, 7).

A5. B) First, we see that path A is longer than path B, since
√

5 > 2. So path A cannot be the shortest one. Also, path E is longer
than path A, since

√
5 > 1; path E cannot be the shortest one either.

And path D is longer than path B;
√

13 >
√

10. So path D isn’t the
shortest path.
Now paths B and C remain. They have common segments of lengths√

5 and 2, so it remains to compare the lengths of the other segments.
Path B has a remaining length of

√
10+1, path C has one of 2

√
5. As

in the figure,
√

10 + 1 = ADE < ADF < ABC = 2
√

5, from which
follows that path B has the shortest length.

A

B

C

D E

F

A6. C) 4 We see that the sequence of final digits is equal to

2, 2, 4, 8, 2, 6, 2, 2, 4, 8, 2, 6, 2, . . . ,

and that we have a repeating part of length 6, namely 2, 2, 4, 8, 2, 6. Since 2007 = 334×6+3,
the final digit of the 2007th number must be a 4.

A7. C) 1003 Since 9n + 9n + 9n = 3× 9n = 32n+1, n = 1003 is a solution of our equation.

3



A8. C) 60 Imagine that the six students sit on their chairs in a row. The teachers then can
pick two neighbouring students, between which they are going to sit. For the first teacher,
there are exactly five ways to pick a chair that is between the chairs of two students. For
the second teacher, there are four, and for the third, there are three. So the total number of
ways for the teachers to pick their chairs in such a way that every teacher sits between two
students, is 5× 4× 3 = 60.

B-problems

B1. 415 Considering the worst case scenario, we see that we can get all the cards marked
‘1’ to ‘9’, and 9 of each of the cards marked ‘10’ to ‘50’, without having 10 cards of one kind.
In that case, we have 45 + 9× 41 = 414. Now picking one card more (so 415 in total) ensures
that we have 10 cards of one kind.

B2. 13 Let P,Q,R, S be the intersections of the two lines where
P and R are on DA, and Q and S are on CB, see the figure. Now the
quadrilaterals ABSR,RSQP and PQCD are similar. So

|DC|
|PQ|

=
|PQ|
|RS|

=
|RS|
|AB|

.

Hence |PQ|2 = 2 × |RS|, and |RS|2 = |PQ| × 16, so |PQ|3 = 64,
and |PQ| = 4, |RS| = 8. So the sides of RSQP are twice as large
as the corresponding sides of PQCD, and the sides of ABSR are
twice as large as the corresponding sides of RSPQ. Thus |RP | =
2 × |PD|, |AR| = 2 × |RP | = 4 × |PD|, and |AD| = 7 × |PD|, so we
conclude that |PD| = 4. Similarly, we see that |QC| = 3.
Thus the perimeter of PQCD equals 13.

A B

CD

P Q

R S

16

8

4

2

34

B3. 120 Recursively, we compute

8⊗ 5 = (5 + 3)⊗ 5
5⊗ (5 + 3)

5⊗ 3
=

8
3

8⊗ 5 =
8
3
× (5⊗ 3)

5⊗ 3 = (3 + 2)⊗ 3
3⊗ (3 + 2)

3⊗ 2
=

5
2

5⊗ 3 =
5
2
× (3⊗ 2)

3⊗ 2 = (2 + 1)⊗ 2
2⊗ (2 + 1)

2⊗ 1
=

3
1

3⊗ 2 = 3× (2⊗ 1)

2⊗ 1 = (1 + 1)⊗ 1
1⊗ (1 + 1)

1⊗ 1
=

2
1

2⊗ 1 = 2× (1⊗ 1)

Since 1 ⊗ 1 = 1 + 2 = 3, we have 2 ⊗ 1 = 2 × 3 = 6, then 3 ⊗ 2 = 3 × 6 = 18, and
5⊗ 3 = 5

2 × 18 = 45, and finally, 8⊗ 5 = 8
3 × 45 = 120.

B4. 2
3

√
39 Let x denote the side of the equilateral triangle. By re-

peated application of Pythagoras’ Theorem, we get x2 = |BD|2 +
1 = (|EA| + |AF |)2 + 1 = (

√
x2 − 42 +

√
x2 − 32)2 + 1 = 2x2 −

25 + 2
√

x2 − 42
√

x2 − 32 + 1. Rewriting this equation gives us
2
√

x2 − 42
√

x2 − 32 = −x2 + 24. Then we square both sides: 4(x4 −
25x2 + 144) = x4 − 48x2 + 576. Thus 3x4 − 52x2 = 0. Now the only

positive solution is x =
√

52
3 = 2

3

√
39.

A

B

C

D

E F

x

x

x

1

3 3

4
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Dutch Mathematical Olympiad
Round 2

Friday, September 14, 2007
Available time: 3 hours

• Writing down just the answer itself is not sufficient; you also need to describe the way you solved the problem.

• Calculators and formula sheets are not allowed; you are only allowed to use a pen, a compass and a ruler or
set square. And of course your common sense.

• Please write the solutions of each problem on a different sheet of paper.

• Good luck!

1. Consider the equilateral triangle ABC with |BC| = |CA| = |AB| = 1.
On the extension of side BC, we define points A1 (on the
same side as B) and A2 (on the same side as C) such that
|A1B| = |BC| = |CA2| = 1. Similarly, we define B1 and
B2 on the extension of side CA such that |B1C| = |CA| =
|AB2| = 1, and C1 and C2 on the extension of side AB
such that |C1A| = |AB| = |BC2| = 1.
Now the circumcentre of 4ABC is also the centre of the
circle that passes through the points A1, B2, C1, A2, B1 and
C2.

A2

A1B2

C2C1

B1

A B

C

Calculate the radius of the circle through A1, B2, C1, A2, B1 and C2.

2. Is it possible to partition the set A = {1, 2, 3, . . . , 32, 33} into eleven subsets that contain
three integers each, such that for every one of these eleven subsets, one of the integers
is equal to the sum of the other two? If so, give such a partition; if not, prove that such
a partition cannot exist.

3. Does there exist an integer having the form 444 · · · 4443 (all fours, and ending with a
three) that is divisible by 13? If so, give an integer having that form that is divisible
by 13; if not, prove that such an integer cannot exist.

4. Determine the number of integers a satisfying 1 6 a 6 100 such that aa is a perfect
square. (And prove that your answer is correct.)

5. A triangle ABC and a point P inside this triangle are given.

Define D, E and F as the midpoints of AP , BP and CP ,
respectively. Furthermore, let R be the intersection of AE
and BD, S the intersection of BF and CE, and T the
intersection of CD and AF .
Prove that the area of hexagon DRESFT is independent
of the position of P inside the triangle.

A B

C

D E

F

R

ST
P

5



Solutions of Round 2 of the Dutch Mathematical Olympiad 2007.

Problem 1:

Let M be the circumcentre of 4ABC and D be the midpoint of BC.

Draw AD through M , and draw MA1. Since AD is a me-
dian, |MD| = 1

3 |AD| = 1
6

√
3 and |BD| = 1

2 . Now, apply-
ing Pythagoras’ Theorem to 4MDA1, we find |MA1|2 =
|MD|2 + |DA1|2 = (1

6

√
3)2 + (3

2)2 = 7
3 . So |MA1| = 1

3

√
21.

(Similarly, one can compute the distance from M to the
other points, yielding 1

3

√
21 every time.) So the radius of

the circle passing through the points A1, B2, C1, A2, B1, C2

is equal to 1
3

√
21.

A2

A1B2

C2C1

B1

M
A

C

D

B

Problem 2:

Suppose that we have such a partition into eleven subsets. Then for each of those eleven
subsets {a, b, c} we have that, say, a + b = c. So a + b + c = 2c, and the sum of the integers
in each subset is even. Hence also the sum of 1, 2, . . . , 32, 33 must be even.
But since 1 + 2 + 3 + · · · + 33 = 1

2 × 33 × (33 + 1) = 33 × 17 is an odd number, we have a
contradiction. So there doesn’t exist a partition with the desired properties.

Problem 3:

Suppose that such an integer 444 · · · 4443︸ ︷︷ ︸
k

exists and that it is divisible by 13, then substracting

13 from that integer gives another integer that is divisible by 13. So 444 · · · 4430 is divisible
by 13. Since 444 · · · 4430 = 444 · · · 443 × 10, and since 10 is not divisible by the prime 13,
444 · · · 443︸ ︷︷ ︸

k−1

, the integer with one 4 less, must also be divisible by 13. We can repeat this

argument until we get the integer 43, from which we conclude that 43 must also be divisible
by 13. But 43 is not a multiple of 13, hence the integer we started with cannot be divisible
by 13 either. So there is no integer having that form that is divisible by 13.
(When the amount of 4’s equals 0, we have the number 3, which obviously isn’t a multiple of
13 either.)

6



Problem 4:

In the prime factorisation of a perfect square, every prime factor occurs an even number of
times. Also, if in the prime factorisation of an integer every prime factor occurs an even
number of times, then that integer must be a perfect square.

We consider two cases; namely a being even, or a being odd.

- Suppose a is even, and write a = 2c, then aa = (2c)2c = (2ccc)2. So in this case, aa

always is a perfect square.

- Now suppose that a is odd, and write a = 2c + 1. Then

aa = (2c + 1)2c+1 = (2c + 1)2c(2c + 1) =
(
(2c + 1)c

)2(2c + 1).

Now
(
(2c + 1)c

)2 is a perfect square, so aa is a perfect square if and only if every prime
factor of (2c + 1) occurs an even number of times, so if and only if (2c + 1) itself is a
perfect square.

So we conclude that every even integer and every odd perfect square no larger than 100 satisfy
the condition, and there are 50 + 5 = 55 of those.

Problem 5:

We denote the area of 4ABC as [ABC]. Similarly,

we denote the area of a quadrilateral ABCD as [ABCD].

Let us first consider 4ABP . The segments AE and BD
are two medians of this triangle, so R is the centroid of
this triangle. Drawing the third median from P through
R, we see that the triangle is divided into 6 triangles with
equal area. So [DREP ] = 2

6 [ABP ].
A B

C

D E

ST

F

R
P

In a similar way, we find for 4BCP and 4CAP respectively that [ESFP ] = 1
3 [BCP ] and

[FTDP ] = 1
3 [CAP ]. Hence

[DRESFT ] = 1
3([ABP ] + [BCP ] + [CAP ]) = 1

3 [ABC],

which is independent of the location of P .

7



Team Selection Test

Valkenswaard, June 7, 2008

1. Find all funtions f : Z>0 → Z>0 that satisfy

f(f(f(n))) + f(f(n)) + f(n) = 3n

for all n ∈ Z>0.

2. Julian and Johan are playing a game with an even number of cards, say 2n cards,
(n ∈ Z>0). Every card is marked with a positive integer. The cards are shuffled and
are arranged in a row, in such a way that the numbers are visible. The two players
take turns picking cards. During a turn, a player can pick either the rightmost or the
leftmost card.
Johan is the first player to pick a card (meaning Julian will have to take the last card).
Now, a player’s score is the sum of the numbers on the cards that player acquired during
the game.
Prove that Johan can always get a score that is at least as high as Julian’s.

3. Let m, n be positive integers. Consider a sequence of positive integers a1, a2, . . . , an

that satisfies m = a1 ≥ a2 ≥ · · · ≥ an ≥ 1. Then define, for 1 ≤ i ≤ m,

bi = #{j ∈ {1, 2, . . . , n} : aj ≥ i},

so bi is the number of terms aj of the given sequence for which aj ≥ i. Similarly, we
define, for 1 ≤ j ≤ n,

cj = #{i ∈ {1, 2, . . . ,m} : bi ≥ j},

thus cj is the number of terms bi in the given sequence for which bi ≥ j.
E.g.: If a is the sequence 5, 3, 3, 2, 1, 1 then b is the sequence 6, 4, 3, 1, 1.

(a) Prove that aj = cj for 1 ≤ j ≤ n.

(b) Prove that for 1 ≤ k ≤ m:
∑k

i=1 bi = k · bk +
∑n

j=bk+1 aj .

4. Let n be positive integer such that
√

1 + 12n2 is an integer.
Prove that 2 + 2

√
1 + 12n2 is the square of an integer.

5. Let 4ABC be a right triangle with ∠B = 90◦ and |AB| > |BC|; and let Γ be the
semicircle with diameter AB that lies on the same side as C. Let P be a point on Γ
such that |BP | = |BC| and let Q be on AB such that |AP | = |AQ|.
Prove that the midpoint of CQ lies on Γ.

8



Solutions of the Team Selection Test 2008

Problem 1. If f(m) = f(n), then 3m = 3n, thus m = n. So f is injective. Now we use
induction on n to show that f(n) = n for all n.
Since f : Z>0 → Z>0, f(1) ≥ 1, f(f(1)) ≥ 1 and f(f(f(1))) ≥ 1. Substituting n = 1 in the
functional equation yields

f(f(f(1))) + f(f(1)) + f(1) = 3,

so equality must hold everywhere, meaning that f(1) = f(f(1)) = f(f(f(1))) = 1.
Let k ≥ 2, and for any n < k, suppose that f(n) = n. Then injectivity implies for all m ≥ k
that f(m) ≥ k. So in particular, f(k) ≥ k, which implies f(f(k)) ≥ k, which again implies
f(f(f(k))) ≥ k. Substituting n = k in the functional equation now yields

f(f(f(k))) + f(f(k)) + f(k) = 3k.

Thus equality must hold everywhere; f(k) = f(f(k)) = f(f(f(k))) = k. This completes our
induction.

The above proves that the only function that can satisfy the functional equation is f(n) = n.
Checking this,

f(f(f(n))) + f(f(n)) + f(n) = n + n + n = 3n,

also proves that f also satisfies the functional equation. �

Problem 2. Let 2n be the number of cards, and assume that the cards are marked with
(from left to right) a1, a2, . . . , a2n. We’ll prove by induction on n that Johan can always pick
either the odd cards a1, a3, . . . , a2n−1, or the even cards a2, a4, . . . , a2n. This is clear for n = 1;
Johan picks the first card if he wants the odd cards, and he picks the second if he wants the
even cards.
So now suppose that the above statement is true for n = k, and consider the situation with
2k + 2 cards, a1, a2, . . . , a2k+2. If Johan wants the odd cards, he first picks a1, and Julian
will have to either pick a2 or a2k+2 in that case. In the first case, the sequence of cards after
2 turns becomes {bi} where bi = ai+2, and according to the induction hypthesis, Johan can
get the odd bi, which in combination with a1, will get him all the odd ai. In the second case,
the sequence of cards becomes {bi} where bi = ai+1, and again, according to the induction
hypothesis, Johan can get the even bi, which in combination with a1, will get him all odd ai.
So Johan can pick the odd cards. In a similar way we can prove that Johan can pick the even
cards. This completes the induction.

Now if the sum of the numbers on the odd cards is larger than or equal to the sum of the
numbers on the even numbers, Johan picks the odd cards. Otherwise he picks the even cards.
This ensures that Johan will get a score at least as high as Julian’s. �

9



Problem 3.

(a) Solution 1. Note that, for 1 ≤ i ≤ m, 1 ≤ j ≤ n:

aj ≥ i ⇐⇒
a1, a2, . . . , aj ≥ i ⇐⇒

at least j terms of a are greater than or equal to i ⇐⇒
bi ≥ j ⇐⇒

b1, b2, . . . , bi ≥ j ⇐⇒
at least i terms of b are greater than or equal to j ⇐⇒

cj ≥ i.

Now let 1 ≤ j ≤ n, and i = aj . Then aj ≥ i, from which follows that cj ≥ i = aj .
Similarly, if i = cj , then similarly, we get aj ≥ i = cj . Thus aj = cj .

Solution 2. Since the sequences are non-increasing, bi = max{l : al ≥ i} and cj =
max{i : bi ≥ j}. Thus, for 1 ≤ j ≤ n:

cj = max{i : bi ≥ j} = max{i : max{l : al ≥ i} ≥ j}.

For fixed i, we have
max{l : al ≥ i} ≥ j ⇐⇒ aj ≥ i,

so cj = max{i : aj ≥ i} = aj .

(b) Solution 1. For 1 ≤ k ≤ m,

k∑
i=1

(bi − bk) =
k∑

i=1

(#{l : al ≥ i} −#{l : al ≥ k}) =
k∑

i=1

#{l : k > al ≥ i}.

Any term al with k > al is counted exactly al times in this sum (for every i ≤ al), so
this sum must equal the sum of all such al. By solution 1 of a), we now have k ≤ al if
and only if l ≤ bk, so k > al if and only if l ≤ bk. Thus,

k∑
i=1

(bi − bk) =
∑

l:k>al

al =
n∑

l=bk+1

al,

which is what we needed to prove.

10



Solution 2. By induction on k. If k = 1, then we need to prove

b1 = b1 +
n∑

j=b1+1

aj ,

which is obviously true since b1 = #{j : aj ≥ 1} = n, so the sum on the right hand side
is empty. So suppose that what we need to prove is true for k = s, 1 ≤ s ≤ m−1. Then

s+1∑
i=1

bi =
s∑

i=1

bi + bs+1

IH= s · bs +
n∑

j=bs+1

aj + bs+1

= (s + 1) · bs+1 +
n∑

j=bs+1+1

aj + s(bs − bs+1)−
bs∑

j=bs+1+1

aj

= (s + 1) · bs+1 +
n∑

j=bs+1+1

aj + s(bs − bs+1)−
bs∑

j=bs+1+1

s

= (s + 1) · bs+1 +
n∑

j=bs+1+1

aj .

�

Problem 4. Let a be such that 1 + 12n2 = a2. Rewrite this as

12n2 = a2 − 1 = (a + 1)(a− 1).

Note that the left hand side is even, hence so is the right hand side, and a has to be odd.
Since the left hand side has an even number of factors 2, both a+1, a−1 have an odd number
of factors 2, since one of these two has exactly one factor 2. Also, (a + 1, a − 1) = 2, from
which follows that for any odd prime divisor p of the left hand side, p divides exactly one
of a + 1, a − 1. Thus, if p ≥ 5, the right hand side has an even number of factors p, and if
p = 3, the right hand side has an odd number of factors p. Hence we have the following two
possibilities:

a + 1 = 6b2 and a− 1 = 2c2

for certain integers b, c such that bc = n, or

a + 1 = 2b2 and a− 1 = 6c2

for certain integers b, c such that bc = n.
Consider the first case. Then 3|a + 1, so a − 1 ≡ 1 mod 3. Thus c2 ≡ 2 mod 3, which is a
contradiction. Hence the second case must hold. In that case,

2 + 2
√

1 + 12n2 = 2 + 2a = 2(a + 1) = 4b2 = (2b)2,

which was what we needed to prove. �

11



Problem 5. Solution 1. Let S be the intersection of Γ en CQ. We need to prove that
|QS| = |SC|.

Note that BC is tangent to Γ, so ∠CBP = ∠BAP = ∠QAP . Since both 4CBP and 4QAP
are both isosceles, they’re similar. Let α = ∠BCP , then

α = ∠BCP = ∠CPB = ∠QPA = ∠AQP.

Now note that

∠CPQ = ∠CPB + ∠BPQ = ∠QPA + ∠BPQ = ∠BPA = 90◦.

So P , just like B, lies on the circle with diameter CQ. S lies on this diameter, and all that’s
left to show, is

∠BSP = 2α = 2∠BCP.

Considering the cyclic quadrilateral QBCP , we see that ∠CPB = ∠CQB, so

2α = ∠CQB+∠AQP = 180◦−∠PQC = 180◦−∠PBC = 90◦+∠QBC−∠PBC = 90◦+∠QBP.

Considering the cyclic quadrilateral ABSP , with diameter AB, we see that

90◦ + ∠QBP = 90◦ + ∠ABP = ∠BSA + ∠ASP = ∠BSP,

from which follows that
2α = ∠BSP,

which is what we needed to prove. �

Solution 2. First of all, as in solution 1, the two isosceles triangles are similar. Since BC is
orthogonal to AB, one of the triangles is rotated by 90◦ with respect to the other. Now let
l1 be the angle bisector of ∠PBC and l2 be the angle bisector ∠PAQ, and note that these
angle bisectors are perpendicular. Let T be the intersection of l1 and l2. Then ∠ATB = 90◦,
so T lies on Γ.

Note that P is the image of C under reflection in l1, and Q is the image of P under reflection
in l2. The composition of these two reflections is the rotation about T by 2 ·90 = 180 degrees.
This rotation sends C to Q, so CTQ is a straight line. Thus T = S. Also, |TC| = |TQ|, so
S is the midpoint of CQ. �
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Dutch Mathematical Olympiad
Round 1

Friday, January 25, 2008
Available time: 2 hours

Please read the following before you start:

• The A-problems are multiple choice questions. Only one of the five given options is correct. Please state
clearly behind which letter the correct solution is stated. You get 2 points for each correct answer.

• The B-problems are open questions, which have a number as answer. You get 5 points for each correct
answer. Please work accurately, since an error in your calculations can cause your solution to be considered
wrong. Please give exact answers, for example 11

81
or 2 +

√
3 or π + 1.

• This is a competition, not an exam. So it is to be expected that only few people will get all the answers
right, and you don’t need to worry if you have only solved a part of the problems.

• The use of formula sheets, calculators and similar tools is not allowed.

• The point is that you have fun solving unusual mathematical problems. Good luck!

A-problems

A1. Alex, Birgit, Cedric, Dion and Ersin all write their names on a sheet of paper, and they put
those five sheets into a large box. They each take one sheet out of the box at random. Now
it turns out that Birgit has Alex’ sheet, Cedric has Dion’s and Dion has Ersin’s. Also, Ersin
doesn’t have Cedric’s sheet. Whose sheet does Alex have?

A) Alex’ B) Birgit’s C) Cedric’s D) Dion’s E) Ersin’s

A2. In a magic 3 × 3 square, the three row sums, the three column sums
and the two diagonal sums are all equal to each other. (A row sum
being the sum of the numbers on a certain row, etc.) In the magic
3 × 3 square shown here three numbers have already been filled in.
What number must be filled in instead of the question mark?

A) 2 B) 4 C) 6 D) 8 E) 9

7

3
?

10

A3. Calculating 6× 5× 4× 3× 2× 1 yields 720. How many divisors does
720 have? (A divisor of an integer n is a positive integer by which n is
divisible. For example: the divisors of 6 are 1, 2, 3 and 6; the divisors
of 11 are 1 and 11.)

A) 6 B) 8 C) 20 D) 30 E) 36

A4. Of a quadrilateral ABCD, we know that |AB| = 3, |BC| = 4, |CD| =
5, |DA| = 6 en ∠ABC = 90◦. (|AB| stands for the length of segment
AB, etc.) What is the area of quadrilateral ABCD?

A) 16 B) 18 C) 181
2 D) 20 E) 6 + 5

√
11

4

5

6

A 3 B

D
C
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A5. How many five-digit numbers (like 12345 or 78000; the first digit must
be non-zero) are there that end on a 4 and that are divisible by 6?

A) 1500 B) 2000 C) 3000 D) 7500 E) 8998

A6. We have a square ABCD with |AB| = 3. On AB, there is a point E
such that |AE| = 1 and |EB| = 2. AC and DE intersect in H. What
is the area of triangle CDH?

A) 9
8 B) 2 C) 21

8 D) 3 E) 27
8

H

A E B

CD

A7. The seven blocks S E T T E E S are shuffled. For example, you can
get E E E S S T T or T E S E T E S .
How many different “words” of length 7 can we get this way? (Any
combination of the 7 letters counts as word.)

A) 210 B) 420 C) 840 D) 1260 E) 5040

A8. How many distinct real solutions does the equation
(
(x2 − 2)2 − 5

)2 = 1 have?

A) 4 B) 5 C) 6 D) 7 E) 8

B-problems

B1. We number both the rows and the columns of an 8×8 chessboard with
the numbers 1 to 8. A number of grains is placed onto each square, in
such a way that the number of grains on a certain square equals the
product of its row and column numbers. How many grains are there
on the entire chessboard?

B2. We take 50 distinct integers from the set {1, 2, 3, . . . , 100}, such that
their sum equals 2900. What is the minimal number of even integers
amongst these 50 numbers?

B3. For a certain x, we have x + 1
x = 5. Define n = x3 + 1

x3 . It turns out
that n is an integer.
Calculate n. (Give your answer using decimal notation.)

B4. Inside a rectangle ABCD, there is a point P with |AP | = 6, |BP | = 7
and |CP | = 5. What is the length of segment DP?

C

BA

D

P
5

6 7
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Solutions
of the problems of Round 1 of the

Dutch Mathematical Olympiad 2008

A-problems

A1. C) Cedric When we put the data into a table, we see that Birgit’s
and Cedric’s sheets haven’t been picked yet. Since Ersin didn’t pick
Cedric’s sheet, he must have picked Birgit’s. So Alex must have picked
Cedric’s sheet.

A B C D E
? A D E ?

A2. B) 4 See the figure. From F + 10 + 3 = F + D + 7, we get
D = 6. Then from 7+E +3 = C +D+E = C +6+E, we can deduce
that C = 7 + 3− 6 = 4.

A3. D) 30 The number 720 only has the prime factors 2, 3 and 5.
The prime factor 2 occurs four times (once in 2, twice in 4 and once
in 6), the prime factor 3 twice (once in 3 and 6), and 5 just once. The
divisors without any factors 3 or 5 are 1, 2, 4, 8 and 16. The divisors
having one factor 3 and no factors 5 are 3, 6, 12, 24, 48. And the
divisors having two factors 3 and no factors 5 are 9, 18, 36, 72 and
144. So 720 has 15 divisors that do not have factors 5. Multiplying
all of these divisors by 5 gives us the other 15 divisors, which makes
30 in total.
Alternative solution: Every divisor of 720 = 24×32×51 can be written
as 2a × 3b × 5c with 5 possibilities for a (being 0 to 4), 3 possibilities
for b (being 0 to 2) and 2 for c (being 0 and 1). So we conclude that
720 has 5× 3× 2 = 30 divisors.

7

310

A B
D E

F
C

A4. B) 18 According to Pythagoras’ Theorem, we have |AC| =
5. So triangle ACD is isosceles with base AD. In this triangle, the
altitude from C divides the triangle into two triangles with sides 3, 4
and 5, and we can divide quadrilateral ABCD in three triangles with
sides 3, 4 and 5. So its area must be equal to 3× 6 = 18.

4

5
C

BA 3

3

3
D

A5. C) 3000 If x is a positive multiple of 6 that ends with a 4, then the next multiples of
6 end with a 0 (x + 6), a 6 (x + 12), a 2 (x + 18), an 8 (x + 24), a 4 (x + 30), so the next
multiple of 6 that ends with a 4 is x+30. So any 30 consecutive positive integers must contain
exactly one integer with the desired properties. How many such integers lie between 10000
and 99999? Since we have 90000 consecutive positive integers, we find 90000 ÷ 30 = 3000
such integers amongst them.

A6. E) 27
8 Draw a line through H parallel to AD, and let P and Q

be the intersections of this line with AB and CD, respectively. Now
we have |HP | : |HQ| = |AE| : |CD| = 1 : 3, so |HQ| = 3

4 × |PQ| =
3
4 × 3 = 9

4 . So the area of triangle CDH equals 1
2 × 3× 9

4 = 27
8 .

QD C

P E BA

H
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A7. A) 210 We have 6 + 5 + 4 + 3 + 2 + 1 = 21 (or
(
7
2

)
) possibilities

to arrange the S-blocks onto the 7 places (see figure). For each choice,
we have 4+3+2+1 = 10 (or

(
5
2

)
) possibilities to arrange the T-blocks

on the remaining 5 places; after which the positions of the E-blocks
are determined. So we have 21× 10 = 210 possibilities.
Alternative solution: If all the blocks were different, we would have got
7! possibilities. But the three E-blocks aren’t different, so we end up
counting each word 3! times this way. Similarly for the two S-blocks
and the two T-blocks. So we find 7!

3!×2!×2! = 7×6×5×4×63!
63!×4 = 7× 6× 5 =

210 different words.

S S . . . . .
S . S . . . .
S . . S . . .

...
. S S . . . .
. S . S . . .
. S . . S . .

...
. . S S . . .
. . S . S . .

...
A8. B) 5 This equation is equivalent to

(x2 − 2)2 − 5 = 1 or (x2 − 2)2 − 5 = −1.

The first is equivalent to x2 − 2 =
√

6 of x2 − 2 = −
√

6, with 2 and 0
solutions respectively (since −

√
6 + 2 < 0).

The latter is equivalent to x2 − 2 = 2 of x2 − 2 = −2, with 2 and 1
solution(s) respectively. So we have 2+0+2+1 = 5 solutions in total.

B-problems

B1. 1296 In the first column, we have, successively, 1× 1, 1× 2, 1× 3, . . . , 1× 8 grains.
So, in the first column: 1× (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8).
In the second column: 2× (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8).
In the third column is: 3× (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8)....
Finally, in the eighth column: 8× (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8).
So, in total: (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8)× (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8).
Since 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 1

2 × 8× (1 + 8) = 36, there are 362 = 1296 grains on the
board.

B2. 6 The 50 odd integers from the set {1, 2, 3, . . . , 100} sum up to 1
2 ×50× (1+99) =

2500, which is still 400 short of 2900. Now exchange the smallest odd integers for the largest
even integers, in pairs, since 400 is even. First exchanging 1 and 3 for 100 and 98 makes the
sum equal to 2694. The next step gives us 2694− 5− 7 + 96 + 94 = 2872. Which is still less
than 2900, so we require another exchange. Now exchanging 9 and 11 for 20 and 28 works,
making the sum 2900 with 6 even integers, showing along the way that that is the minimal
number of even integers we need to do so.

B3. 110 We know that x must satisfy x + 1
x = 5, so x2 − 5x + 1 =

0, from which follows that x = x1,2 = 5±
√

21
2 . Note that x1x2 = 1.

Now we have x3 + x−3 = x3
1 + x3

2 = 1
8

((
5 +

√
21

)3
+

(
5−

√
21

)3
)

=
1
8

((
53 + 3 · 52 ·

√
21 + 3 · 5 ·

√
21

2
+
√

21
3
)

+
(
53 − 3 · 52 ·

√
21 + 3 · 5 ·

√
21

2 −
√

21
3
))

=
2
8

(
53 + 3 · 5 · 21

)
= 110.

Alternative solution: From (x + 1
x)3 = x3 + 3x2( 1

x) + 3x( 1
x)2 + ( 1

x)3 = x3 + 3x + 3
x + 1

x3 we
can deduce that x3 + 1

x3 = (x + 1
x)3 − 3(x + 1

x) = 53 − 3× 5 = 110.

B4. 2
√

3 Let Q, R, S, T be the orthogonal projections of P on
AB, BC, CD, DA, respectively. Then we have
|AQ|2 + |QP |2 = 36 and |BQ|2 + |SP |2 = 25 (since |BQ| = |CS|),
so |AQ|2 + |QP |2 + |BQ|2 + |SP |2 = 61. We also have |BQ|2 + |QP |2 =
49.
So |DS|2 + |SP |2 = |AQ|2 + |SP |2 = 61− 49 = 12 and |DP | =

√
12 =

2
√

3.

C

BA

D

P

S
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